

Introduction to Linear Algebra (Math 220-2) – Fall 2013

Final Examination

Name: _____

WSU ID: _____

- There are **ten** problems in **six** pages.
- Show all work, and provide appropriate **justifications** where required.
- The use of electronic devices is **not** permitted.

1	2	3	4	5	6	7	8	9	10	Total

1. (10)

$$\text{Let } A = \begin{bmatrix} 2 & 0 & -4 & 2 & -1 & -4 \\ 1 & 0 & -2 & 1 & 2 & 1 \\ 3 & 1 & -4 & 1 & 1 & 3 \\ -2 & 0 & 4 & -2 & -3 & -1 \\ 1 & 0 & -2 & 1 & 1 & 2 \end{bmatrix}. \text{ Then } A \text{ row reduces to } \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Find a basis for $\text{Col } A$.
- Find a basis for $\text{Nul } A$.
- What is $\dim \text{Nul } A$? Explain.
- What is $\text{rank } A$? Explain.

2. (10) Find all values of h so that the set of vectors $\left\{ \begin{bmatrix} 4 \\ 4 \\ h \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ h \\ 6 \end{bmatrix} \right\}$ forms a basis for \mathbb{R}^3 . Justify your answer.

3. (10)

$$\text{Let } A = \begin{bmatrix} 1 & 3 & -2 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & -2 & 2 \\ 1 & 3 & 4 & 0 \end{bmatrix}. \text{ Find } \det(A).$$

4. (10)

$$\text{Let } A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 4 & 0 \\ 2 & 1 & 4 \end{bmatrix}.$$

(a) Find the characteristic polynomial of A . You may leave your answer in factored form.
 (b) Find the eigenvalues of A . NOTE: The eigenvalues are integers between zero and ten.

5. (10)

$$\text{Let } B = \begin{bmatrix} 2 & 2 & 0 & 2 \\ 0 & 2 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 3 \end{bmatrix}.$$

Find a basis for the eigenspace of B associated with the eigenvalue $\lambda = 2$.

6. (20) Answer each of the following questions with justification.

(a) If A is a 5×6 matrix, can the columns of A form a basis for \mathbb{R}^5 ?
 (b) If A, B , and C are $n \times n$ matrices, A is invertible, and $AB = AC$, then must $B = C$?
 (c) If \mathbf{x} is an eigenvector of the 4×4 matrix A corresponding to the eigenvalue $\lambda = 0$, do the columns of A span \mathbb{R}^4 ?
 (d) If A is a 3×4 matrix, what is the largest value of the rank of A ? What is the largest value of the dimension of the null space of A ?
 (e) Let A be a 4×4 matrix with $\det(A) = 6$, and the matrix B is formed from A by first interchanging Rows two and three, and then dividing Row one by 2. What is $\det(B)$?

7. (5) Construct a 3×3 **triangular** matrix A so that the vector $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is in $\text{Col}(A)$.

8. (5) Let $A = \begin{bmatrix} 3 & 2 & -3 \\ 2 & 0 & 0 \\ 5 & -2 & -1 \end{bmatrix}$. Is $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ an eigenvector of A ? Justify your answer.

9. (5) Let A and B be 3×3 matrices such that $\det(A) = 2$ and $\det(B) = -3$. Find each of the following determinants, or indicate that the determinant cannot be found from the information given.

(a) $\det(B^3)$
 (b) $\det(3B)$
 (c) $\det(B^{-1}AB)$
 (d) $\det(A + B)$
 (e) $\det(A^{-2})$

10. (5) Let λ be an eigenvalue of the $n \times n$ matrix A . Let $B = A - \lambda I$. Show that B is not an invertible matrix.