

Introduction to Linear Algebra (Math 220_2) – Fall 2013

Practice Final

- There are **twelve** problems and **eight** pages in this exam.
- Show all work.
- Provide appropriate **justifications** where required.
- Good luck!

1. (6) Let $T(x_1, x_2) = (3x_1 + 2x_2, x_1, -x_1 + 4x_2)$ be a linear transformation.

- Is T one-to-one? Justify your answer.
- Is T onto? Justify your answer.

2. (8)

$$\text{Let } A = \begin{bmatrix} 1 & 3 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 2 & 6 & 2 & 6 & 0 \end{bmatrix}. \text{ Then } \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Determine a basis for $\text{Col } A$.
- Determine a basis for $\text{Nul } A$.
- What is $\dim \text{Nul } A$? Explain.
- What is $\text{rank } A$? Explain.

3. (10) Let A and B be $n \times n$ matrices. We say that A and B are *similar* if there is an invertible matrix P such that $B = P^{-1}AP$. Show that if A and B^T are similar, then A and B have the same eigenvalues.

4. (10) Let $A + B$ and C be $n \times n$ invertible matrices. Solve the following equation for X . Justify each step in your solution.

$$C^{-1}(XB + XA)C = C^T.$$

5. (8) The matrix $A = \begin{bmatrix} -1 & 3 & 3 \\ -3 & 5 & 3 \\ 3 & -3 & -1 \end{bmatrix}$ has eigenvalues 2, 2 and -1 . Determine a basis for the eigenspace corresponding to the eigenvalue $\lambda = 2$.

6. (9) Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 4 \\ -1 & 2 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$.

- If A is invertible, find A^{-1} .
- If the inverse exists, use A^{-1} computed above to solve the system $A\mathbf{x} = \mathbf{b}$.

7. (7) Construct a *nonzero* 3×3 matrix A with rank 2, and a vector \mathbf{b} that is *not* in $\text{Nul } A$.

8. (8) Let $\det A = 3$ and $\det B = 2$. Evaluate each of the following quantities, if possible. Justify your answers.

- $\det A^2$
- $\det(2AB^T)$
- $\det A^{-1}/\det B^{-1}$
- $\det(A + B)$

9. (7) It is known that $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ is an eigenvector of a 3×3 matrix A corresponding to the eigenvalue $\lambda = 0$. Is the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ one-to-one? Justify your answer.

10. (8) Let $A = \begin{bmatrix} 2 & 5 \\ k & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -5 \\ 3 & k \end{bmatrix}$. What value(s) of k , if any, will make $AB = BA$?

11. (8) Let $A = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix}$.

- Is $\lambda = 1$ and eigenvalue of A ? If yes, find an associated eigenvector.
- Is $\lambda = -2$ and eigenvalue of A ? If yes, find an associated eigenvector.
- Is $\mathbf{x} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$ an eigenvector of A ? If yes, find the corresponding eigenvalue.
- Is $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ an eigenvector of A ? If yes, find the corresponding eigenvalue.

12. (10) Decide whether each of the following statements is *True* or *False*. Justify your answer.

- If $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathbb{R}^n$, then $\lambda = 0$ is an eigenvalue of A .
- It could happen that $\det(A + B) = \det A + \det B$.
- If \mathbf{x} is an eigenvector of the matrix A corresponding to the eigenvalue λ , then $3\mathbf{x}$ is an eigenvector corresponding to the eigenvalue 3λ .
- If A is a 3×4 matrix, the largest value that $\dim \text{Nul } A$ can take is 3.
- If the system $A\mathbf{x} = \mathbf{b}$ has more than one solution, then so does the system $A\mathbf{x} = \mathbf{0}$.