

The **column space** of a matrix A is the set $\text{Col } A$ of all linear combinations of the columns of A .

The **null space** of a matrix A is the set $\text{Nul } A$ of all solutions to the homogeneous equation $A x = \mathbf{0}$.

A spanning set can be too big.

A linearly independent set can be too small.

A **basis** is just right.

DEFINITION

A **basis** for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H .

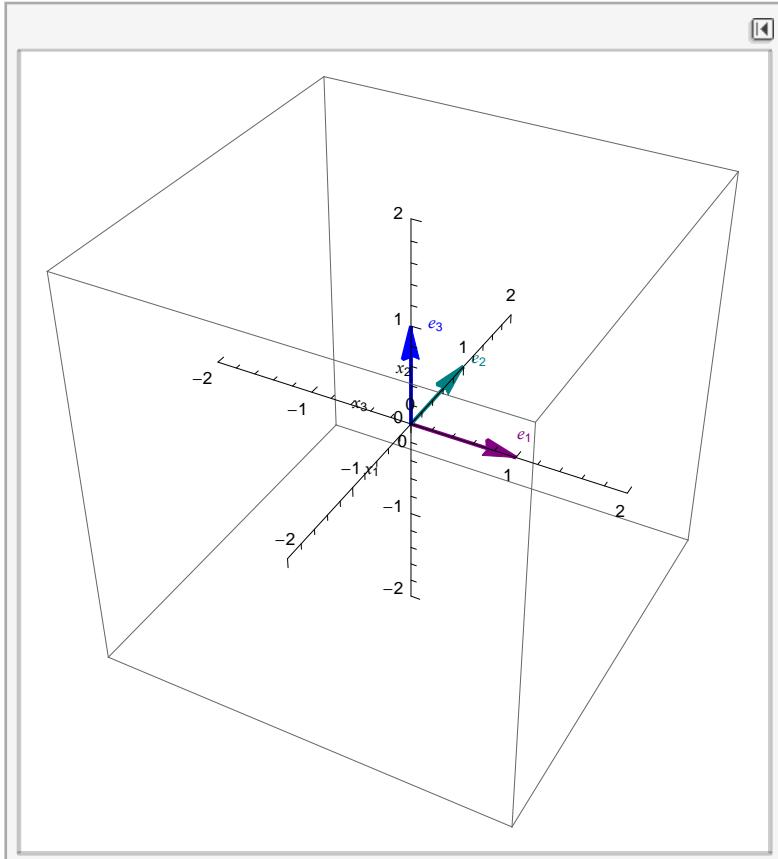


FIGURE 3: The standard basis

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

The set $\{e_1, e_2, \dots, e_n\}$ is called the **standard basis** for \mathbb{R}^n .

THEOREM 13

The pivot columns of a matrix A form a basis for the column space of A .

Warning Be careful to use *pivot columns of A itself* for the basis of $\text{Col } A$. The columns of an echelon form B are often **not** in the column space of A .

To find a basis for the nullspace, use the vectors from the parametric vector form of the solution for $Ax = 0$.

EXAMPLE: Find a basis for $\text{Col } A$ and $\text{Nul } A$, when

$$A = \begin{pmatrix} 1 & 0 & 3 & 2 & 1 & 9 \\ 2 & 0 & 6 & 5 & 2 & 8 \\ 3 & 0 & 9 & 7 & 3 & 7 \\ 4 & 0 & 12 & 8 & 8 & 8 \end{pmatrix}$$

`TraditionalForm[RowReduce[A]]`

$$\begin{pmatrix} 1 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

A basis for $\text{Col } A$ is $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 7 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 8 \end{pmatrix}, \begin{pmatrix} 9 \\ 8 \\ 7 \\ 8 \end{pmatrix} \right\}$

To find a basis for $\text{Nul } A$, pretend (or actually put in) there is a right hand side of all zeros and write down the parametric form for your solution

$$\begin{pmatrix} 1 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad x_1, x_4, x_5, x_6 \text{ are basic, and } x_2, x_3 \text{ are free variables}$$

$$x_1 = -3x_3$$

$$x_2 = x_2$$

$$x_3 = x_3$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_6 = 0$$

$$x = x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

A basis for $\text{Nul } A$ is

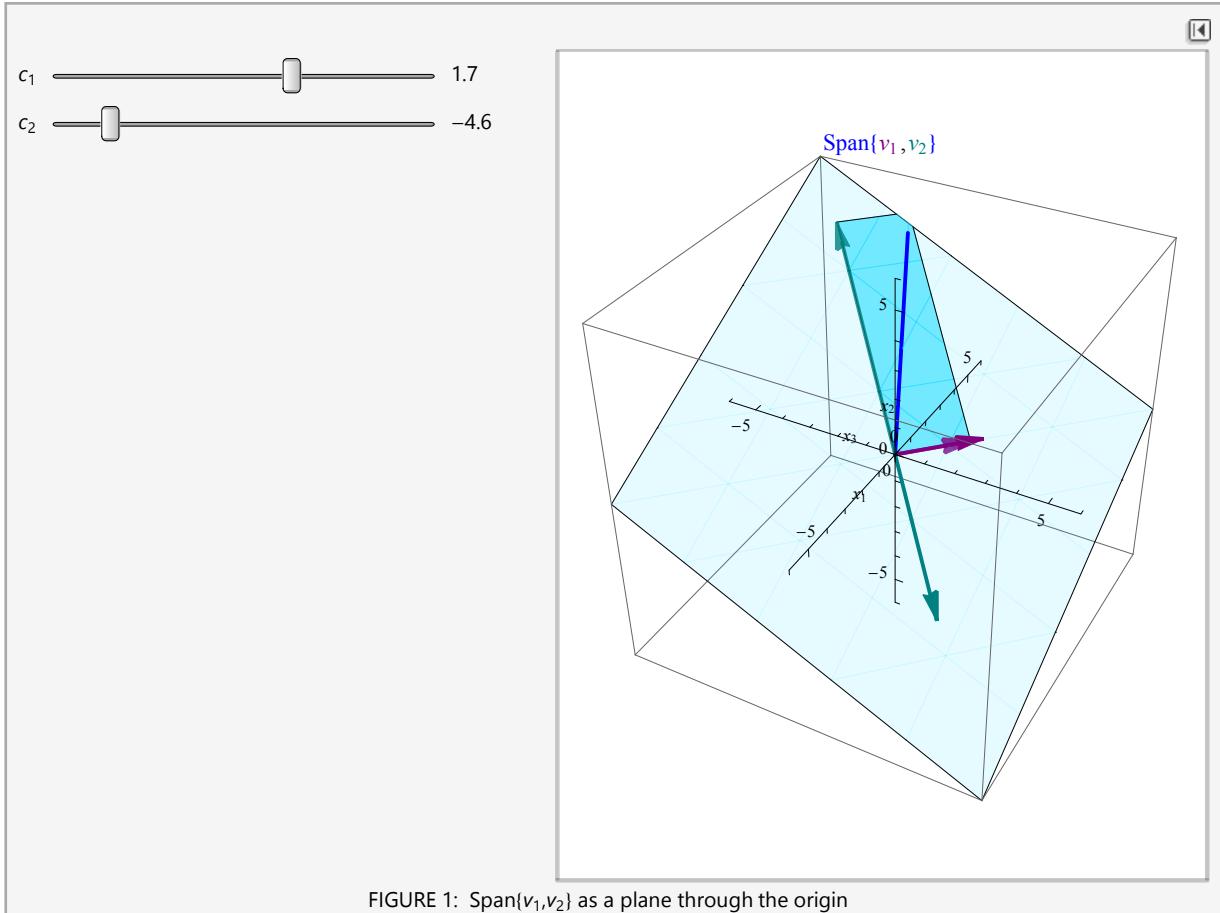
$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

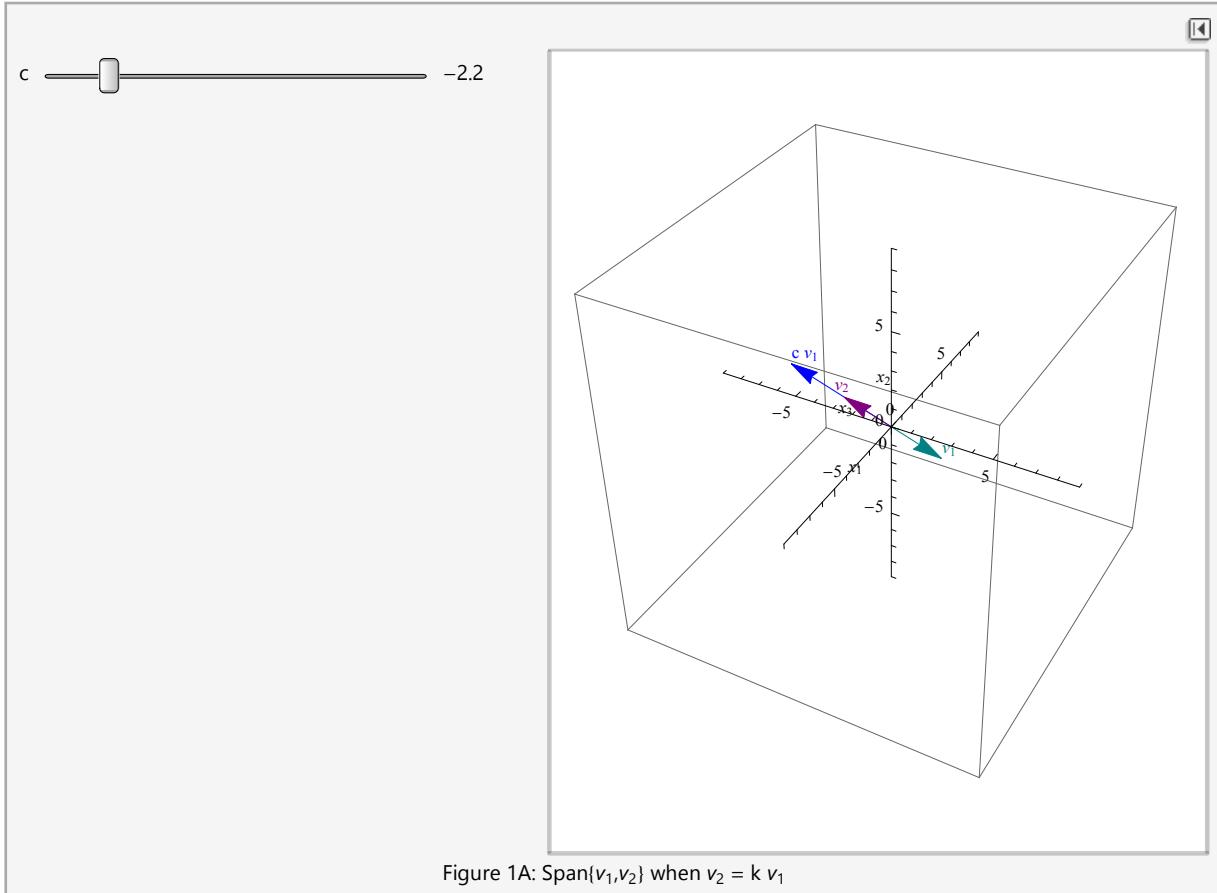
FACT: Any two bases have the same number of vectors.

DEFINITION

The **dimension** of a nonzero subspace H is the number of vectors in any basis for H . The dimension of the zero subspace $\{0\}$ is defined to be zero.

A 3-D subspace of R^3 is equal to R^3





DEFINITION

The **rank** of a matrix A is the dimension of the column space of A .

Every column of a matrix is either a pivot (contributing to the dimension of $\text{Col } A$) or it corresponds to a free variable (contributing to the dimension of $\text{Nul } A$).

THEOREM 14

The Rank Theorem

If a matrix A has n columns, then $\text{rank } A + \dim \text{Nul } A = n$

Question: What is the $\dim \text{Nul } A$ if A is a 5×7 matrix with rank 4?

ANSWER: $7-4=3$

ANY TWO WILL DO!

Linearly independent and spanning === basis

S is a spanning set with the right number (dimension) of vectors === basis

S is a linearly independent set with the right number (dimension) of vectors === basis.

QUESTION: Suppose a subspace H has dimension 3. If S is a linearly independent subset of H with 2 vectors, is S a basis for H ?

NO - S is toooo small.

QUESTION: Suppose H is a five dimensional subspace, and S is a set of five vectors that are all linearly independent. Is S a basis for H ?

YES - S has the right number of vectors and is linearly independent.

THEOREM 16

The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

m. The columns of A form a basis of \mathbb{R}^n .

n. $\text{Col } A = \mathbb{R}^n$

o. $\dim \text{Col } A = n$

p. $\text{rank } A = n$

q. $\text{Nul } A = \{\mathbf{0}\}$

r. $\dim \text{Nul } A = 0$