MATH 220- Lecture 19 (0 /22/2013)
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16. If ann x n matrix A is invertible, then the columns of A7 are
linearly independent. Explain why.
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22. If n x n matrices E and F have the property that EF = T,
then E and F' commute. Explain why.

€ ad f commale  mean E+-FE. W das @K,
JOV& WWA{’ ‘I[D QQ};V\) EF=FE =T.

- ‘vvnwu!v‘lo/e
Cine  EF=1L, L;U mT ot € and T owe i

(chalewants (}) and (k) i MT).

- 5
Gne E i mvwzHo\z and EF :_L F=E .

Oy FE=EE=T

27. Let A and B ben x n matrices. Show that if A B is invertible,
so is A. You cannot use Theorem 6(b), because you cannot
assume that A and B are invertible. [Hint: There 1s a matrix
W such that ABW = 1. Why?]
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31. Suppose A is an n x n matrix with the property that the
equation Ax = b has at least one solution for each b in R".
Without using Theorems 5 or 8, explain why each equation
Ax = b has in fact exact)y one s¢lution.
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14. An m x n lower triangular matrix is one whose entries
above the main diagonal are 0’s (as in Exercise 3). When

is a square lower triangular matrix invertible? Justify your
answer.
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