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In Exercises 1 and 2, find the vector x determined by the given
coordinate vector [xX] and the given basis B, Tlustrate your
answer with a figure, as in the solution of Practice Problem 2.
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In Exercises 3-6, the vector X is in a subspace f with & basis
B = {b;,b,}. Find the B-coordinate vector of x.
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In Exercises 17 and 18, mark each statement True or False. Justify

each answer, Here A is an m = nm matrix,

17 a. B ={v,, ... v, 15 a basis for a si_space H and if
X =¥y +---+c,vy,, then ¢y,..., ¢, are the coordi-
nates of x relative to the basis 5,

b. Each line in B" is a one-dimensional subspace of B",

c. The dimension of Col A is the number of pivot columns
m A

d. The dimensions of Col A and Nul A add up to the number
of columns in A.

e. If a set of p vectors spans a p-dimensional subspace
of B", then these vectors form a basis for H.
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23. If possible, construct a 3 x 5 matrix A such that dim Nul A4 =
3anddimCol 4 = 2.
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