MATH 220~ Lecture 27(11/13/2013)
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Find the eigenvalues of the matrices in Exercises 17 and 18.
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30. Consider ann x n matrix A with the property that the column
sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Use Exercises 27 and 29.]

27. Show that A is an eigenvalue of A if and only if A is an
eigenvalue of A”. [Hint: Findouthow A — A7 and A" — AT

are related. |

29. Consider an n x n matrix A with the property that the row
sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Find an eigenvector.]
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