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Exercises 9-14 require techniques from Section 3.1. Find the
characteristic polynomial of each matrix, using cither a cofactor 3o
expansion or the special formula for 3 x 3 determinants described 10 05 0= A
prior to Exercises 15-18 in Section 3.1. [Note: Finding the -2 0 7
characteristic polynomial of a 3 x 3 matrix is not easy to do with
just row operations, because the variable A is involved. |
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For the matrices in Exefljses 15-17, list the real eigenvalues,
repeated according to their multiplicities.
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18. It can be shown that the algebraic multiplicity of an eigen-
value A is always greater than or equal to the dimension of the
eigenspace corresponding to A. Find /i in the matrix 4 below
such that the eigenspace for A = 4 is two-dimensional:
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0 h 3
A=l h3
0 0O 2

Rogrd © Aind A cuch Mot OQA'M(N\AQ(A~H>>:;Z( vy
A-A7 Mos 2 Sb«f'ﬁ_ vennbleg,

oD

f‘o@g;ﬂ O@gg =0 Qo/f'lw\"wg
AT = lo-2 £ 3| RAR_ 1) % 4G e 2 ik

ODO@ +l2 ) Oo@

0 0 0 -2 erj—]zg 00 O 0

Ao h=-3 make e dg«mépw cmwjmo%qé
A ejzam\/oJN ey o()deWr\%fow.O.

Simi la Martnceg

nxn . v . i
Dfl@ %va\ A(P)él'R ) A s Slv;\lav b B (F é:we ;
an  inworhble nddx P E R gt mat, PAP=D

0 Muis e, PBFLA Ao Bois smiar do A
Co we juh auy fal R and B ove cimiler
and wWnte AVB.

using B! pe The inonkible  amadhix,
ey 'elP) = A



We hove &l\vemij sean fhat ;F AMB/ fon
dok = deb By
\ - PRp whe P nohHe.
Co debh = dek(p?)- det B deb(P)  ar deb AB=debh dbB

L R AR w debW)= L
() Ren et Ao

/(LLMM C)% AwB  Ahen M%\@Mm camg  thavaetenistic
\sa%wow\fagl and Jamee ’H\L CAML ’&BX“MMQL

|
(%)m B=P AP
B-AL = w’%ﬁ = PA(APJXP) = Pl[A’)\1>P
B 1 0r (B0 = AR+AC

bence (A-AT) ~ (B-AT).

Ao AQHB—/\T) _ det (A’/\I> (0&4 dhowon  ahove)



86
EROs  and @Cﬁehmlmeg @6

ot At eplacemerf €R)  does
\/;,)\ilrhgm\gjﬂmpwgm{mn% /IC\MJ? zﬁ AM 3, then

\ det B=deb A.
How doet EROs affeet ufdemxﬁwz? ¢

\76 Q&0

In Exercises 21 and 22, 4 and B are n x n matrices. Mark each
statement True or False. Justify each answer.

22. d. A row replacement operation on A does not change the
eigenvalues.
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%% Octave session from Lecture 28 on Thursday, Nov 21, 2013
%% Notice that there might be minor differences between Octave and
%% Matlab, but the results of your calculations should be the same.

octave:2>A =[00.33;.18 00;0.71.94]

0.00000 0.00000 0.33000
0.18000 0.00000 0.00000
0.00000 0.71000 0.94000

% Use the function eig to find the eigenvalues and the corresponding eigenvectors
octave:3> help eig

“eig' is a function from the file /usr/lib/octave/3.6.2/oct/i686-pc-cygwin/eig.oct
-- Loadable Function: LAMBDA = eig (A)
-- Loadable Function: LAMBDA = eig (A, B)
-- Loadable Function: [V, LAMBDA] = eig (A)
-- Loadable Function: [V, LAMBDA] = eig (A, B)
Compute the eigenvalues and eigenvectors of a matrix.

Eigenvalues are computed in a several step process which begins
with a Hessenberg decomposition, followed by a

Schur decomposition, from which the eigenvalues are apparent. The
eigenvectors, when desired, are computed by further manipulations
of the Schur decomposition.

The eigenvalues returned by “eig' are not ordered.

See also: eigs, svd
Additional help for built-in functions and operators is
available in the on-line version of the manual. Use the command
“doc <topic>' to search the manual index.
octave:4> [V,L]=eig(A)
V=

0.68209 + 0.00000i 0.68209 - 0.00000i 0.31754 + 0.00000i

-0.06241 - 0.58963i -0.06241 + 0.58963i 0.05811 + 0.00000i
-0.04505 + 0.42562i -0.04505 - 0.42562i 0.94646 + 0.00000i

L=
Diagonal Matrix
-0.02180 + 0.20592i 0 0
0 -0.02180 - 0.20592i 0
0 0 0.98359 + 0.00000i

% We could extract the eigenvalues from the diagonal of L using the command diag

octave:5> Lambdas = diag(L)
Lambdas =
-0.02180 + 0.20592i
-0.02180 - 0.20592i
0.98359 + 0.00000i

% The absolute values of the eigenvalues are obtained using the
% function abs

octave:6> abs(Lambdas )
ans =
0.20707
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