MATH 220- Lecture 30 (12/05/2013)
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5. Justify your answer for each of the following.

(a) If A has more columns than rows, can the columns of A be linearly

independent?
No-
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(b) If Ais a 5 = 5 matrix and the rank of A is 5, is det(A) =07
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{¢) Do six linearly independent vectors in &Y span a subspace of dimension
six?
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(d) If A, B3, and € are n x n matrices and AB = AC, must B = C7
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7. Suppose that A is matrix with rank(A) = 3, dim Nul{A) = 2, and such that
the row reduced echelon form of A has one row of zeros. How many rows does
A have? How many eolumns does A have?
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0. Let x € B" be an eigenvector of both the n x n matrices A and B. Show that
7 18 an eigenvector of the matrix AB.
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7. (7) Construct a nonzero 3 x 3 matrix A with rank 2, and a vector b that is not in Nul A.
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(10) Let A+ B and ¢ be i x n invertible matrices, Solve the following equation for X,
Justily each step in your solution.
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