

Honors Introductory Linear Algebra (Math 230) – Spring 2011 Final Examination

- There are **twelve** problems and **eight** pages in this exam.
- Points (in parentheses) add to 105. You will be graded for 100 points.
- Provide appropriate **justifications** where required.
- Good luck!

1. (8) Find the characteristic polynomial and the eigenvalues of A where

$$A = \begin{bmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 0 & 0 & 3 \end{bmatrix}.$$

2. (8)

Let $A = \begin{bmatrix} 1 & 3 & 1 & -3 & 0 \\ 0 & 0 & 1 & -3 & 4 \\ 0 & 0 & 0 & -1 & 2 \\ -2 & -6 & -2 & 6 & 0 \end{bmatrix}.$

- (a) Determine a basis for $\text{Col } A$.
- (b) Determine a basis for $\text{Nul } A$.
- (c) What is $\dim \text{Nul } A$? Explain.
- (d) What is $\text{rank } A$? Explain.

3. (12) Let A and B be invertible $n \times n$ matrices, and let \mathbf{x} be an eigenvector of the product AB corresponding to the nonzero eigenvalue λ . Show that the vector $B\mathbf{x}$ is an eigenvector of $(BA)^{-1}$. What is the corresponding eigenvalue? Justify your steps.

4. (10) Let $A + B$ and C be $n \times n$ invertible matrices. Solve the following equation for X . Justify each step in your solution.

$$C^{-1}(XB + XA)C = C^T.$$

5. (9) Let $A = \begin{bmatrix} 1 & 3 & 8 \\ 2 & 4 & 11 \\ 0 & -1 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 5 \\ 1 & 5 \\ 6 & -1 \end{bmatrix}$. Find $A^{-1}B$ without computing A^{-1} .

6. (7) Construct a 3×3 matrix A with rank 2, and list two different nonzero (i.e., with at least one entry nonzero) vectors in $\text{Nul } A$. Justify.

7. (8) Let H be the subspace of \mathbb{P}_3 spanned by the polynomials $p_1(t) = t - t^2$, $p_2(t) = 1 + 2t + 4t^2$, $p_3(t) = -1 + t - 7t^2$. Find *two* different bases for H .

8. (6) Let $\det A = 3$ and $\det B = 2$. Evaluate each of the following quantities, if possible. Justify your answers.

- $\det(2AB^T)$
- $\det A^{-1}/\det B^{-1}$
- $\det(A + B)$

9. (8) Let $A = \begin{bmatrix} 2 & 5 \\ k & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -5 \\ 3 & h \end{bmatrix}$. What value(s) of h and k , if any, will make $AB = BA$?

10. (6) It is known that $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ is an eigenvector of a 3×3 matrix A corresponding to the eigenvalue $\lambda = 0$. Is the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ one-to-one? Is it onto? Justify your answers.

11. (8) Let $A = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix}$.

- Is $\lambda = 1$ and eigenvalue of A ? If yes, find an associated eigenvector.
- Is $\lambda = -2$ and eigenvalue of A ? If yes, find an associated eigenvector.
- Is $\mathbf{x} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$ an eigenvector of A ? If yes, find the corresponding eigenvalue.
- Is $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ an eigenvector of A ? If yes, find the corresponding eigenvalue.

12. (15) Decide whether each of the following statements is *True* or *False*. Justify your answer.

- If $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathbb{R}^n$, then $\lambda = 0$ is an eigenvalue of A .
- It could happen that $\det(A + B) = \det A + \det B$.
- If \mathbf{x} is an eigenvector of both matrices A and B , then it is also an eigenvector of AB .
- $\det(-A) = -\det(A)$.
- If the system $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has a unique solution, then the 3×3 matrix A is invertible.