

Calculus III (Math 273, Section 2) – Fall 2014

Exam 1

- There are **eight** problems and **four** pages in this exam.
 - Show all work, and provide appropriate **justifications** where required.
 - Calculators, cell phones, laptops, or any other electronic devices are **not** allowed.
 - Good luck!
-

1. (14) Find the domain and range of the function $f(x)$ given below, and identify its level curves. Sketch one typical level curve. Is the domain open or closed? Is the domain bounded?

$$f(x, y) = \ln(x^2 + y^2 - 1).$$

2. (12) Find the first partial derivatives with respect to each variable of the functions in each case.

(a) $f(x, y) = \frac{2+y}{x+\cos y}$.

(b) $g(x, y, z) = \cos(2xy + 3y - 5z)$.

3. (12) Find all second order partial derivatives of the function $f(x, y) = x^2 - 3xy + \sin y + 5e^x$.

4. (12) Show that if $w = f(s)$ is a differential function of s and if $s = y + 5x$, then

$$\frac{\partial w}{\partial x} - 5 \frac{\partial w}{\partial y} = 0.$$

5. (12) Find $\frac{dy}{dx}$ at $P(0, \ln 2)$ when y is defined implicitly as a function of x by $2xy - e^{x+y} - 2 = 0$.

6. (14) The derivative of the function $f(x, y, z)$ at point P is greatest in the direction of $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$, and this derivative has value 7. What is the derivative of f at P in the direction $3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$?

7. (12) Is there a direction \mathbf{u} in which the rate of change of $f(x, y) = 2x^2 - 5xy + 4y^2$ at the point $P(2, 1)$ equals 4? **Justify** your answer.

8. (12) Decide whether each of the following statements is *True* or *False*. **Justify** your answer.

(a) If a set is unbounded, then it must also be open.

(b) The partial derivatives f_x and f_y of a function $f(x, y)$ exist at all points in its domain.

(c) The directional derivative of f in a direction \mathbf{u} is a vector pointing in the same direction as \mathbf{u} .

(d) If $|\nabla f| = 2$ at a point P_0 , then there is a direction \mathbf{u} along which the derivative of f at P_0 is 1.