

Calculus III (Math 273, Section 2) – Fall 2014

Exam 2

- There are **eight** problems and **four** pages in this exam.
- Show all work, and provide appropriate **justifications** where required.
- Calculators, cell phones, laptops, or any other electronic devices are **not** allowed.
- Good luck!

1. (14) Find the equation for the plane tangent to the surface $z = x^2 + y^2 - 1$ at the point $P_0(1, 2, 4)$. Also find the equation to the line normal to the given surface at P_0 .
2. (12) The area of the ellipse $(x/a)^2 + (y/b)^2 = 1$ is given by $A = \pi ab$. If $a = 10$ cm and $b = 5$ cm as measured **to the nearest millimeter**, what is the percentage error in the calculated area?
3. (12) Find the parametric equation for the line tangent to the curve of intersection of the two surfaces $2x^2 + y^2 + 3z = 6$ and $x = 1$ at $P_0(1, 1, 1)$.
4. (14) Find all local minima, local maxima, and saddle points of the function given below. You should evaluate the function at each critical point.

$$f(x, y) = x^3 + 3xy + y^3.$$

5. (16) Find the absolute maximum and minimum values of $f(x, y) = 4xy - 3x^3 - 2y^2$ on the region R that is the part of the x -axis connecting the points $(1, 0)$ and $(4, 0)$.
6. (12) Evaluate the double integral over the given region R .

$$\iint_R \frac{xy^3}{x^2 + 1} dA, \quad R : 0 \leq x \leq 1, \quad 0 \leq y \leq 2.$$

7. (14) Sketch the region of integration, and write an equivalent integral with the order of integration reversed. Then evaluate this reverse ordered integral.

$$\int_0^3 \int_{\sqrt{x/3}}^1 e^{y^3} dy dx.$$

8. (6) Decide whether each of the following statements is *True* or *False*. **Justify** your answer.
 - (a) A saddle point of a function cannot be on the boundary of its domain.
 - (b) Reversing the order of integration of a double integral is equivalent to swapping x and y in the integral, i.e., replace every occurrence of x in the integral with y , and vice versa.