

Calculus III (Math 273, Section 2) – Fall 2014

Practice Exam 1

- Show all work, and provide appropriate **justifications** where required.
- Calculators, cell phones, laptops, or any other electronic devices are **not** allowed.
- Good luck!

1. (14) Find the domain and range of the function $f(x)$ given below, and identify its level curves. Sketch one typical level curve. Is the domain open or closed? Is the domain bounded?

$$f(x, y) = \sqrt{y - x^2}.$$

2. (12) Find the first partial derivatives with respect to each variable of the functions in each case.

(a) $f(x, y) = \frac{x+y}{xy-1}$. Simplify your answers.

(b) $f(x, y, z) = \ln(2x + 3y - 5z)$.

3. (12) Find all second order partial derivatives of the function given below.

$$g(x, y) = y \sin x - e^y.$$

4. (12) Find $\frac{\partial w}{\partial s}$ when $r = \pi$, $s = 0$, if $w = \sin(2x - y)$, $x = r + \sin s$, $y = rs$.

5. (12) Find $\frac{dy}{dx}$ at $P(0, 1)$ when the following equation defines y implicitly as a function of x .

$$1 - x - y^2 - \sin xy = 0.$$

6. (14) Find the derivative of the function $f(x, y, z) = xyz$ in the direction of the velocity vector of the helix $\mathbf{r}(t) = (\cos 3t)\mathbf{i} + (\sin 3t)\mathbf{j} + 3t\mathbf{k}$. Recall that the velocity vector of the curve $\mathbf{r}(t)$ is $d\mathbf{r}/dt$.

7. (12) What is the largest value that the directional derivative of $f(x, y, z) = 1/xyz$ can have at the point $(1, 1, 1)$?

8. (12) Decide whether each of the following statements is *True* or *False*. **Justify** your answer.

(a) If the domain of a function $f(x, y)$ is closed, then it cannot be unbounded.

(b) When we have a dependent variable that depends on three intermediate variables and two independent variables, we draw three branch diagrams, one for each intermediate variable.

(c) At the point (x_0, y_0) , the vector ∇f is normal to the curve $f(x, y) = f(x_0, y_0)$.

(d) The directional derivative of f in any direction \mathbf{u} *different* from that of ∇f is strictly smaller than the derivative in the direction of ∇f .