

Calculus III (Math 273, Section 2) – Fall 2014

Practice Exam 2

- Show all work, and provide appropriate **justifications** where required.
 - Calculators, cell phones, laptops, or any other electronic devices are **not** allowed.
 - Good luck!
-

1. (14) Find the equation for the plane tangent to the surface $x^2 + y^2 + z = 4$ at the point $P_0(1, 1, 2)$. Also find the equation to the line normal to the given surface at P_0 .
2. (12) Find the parametric equation for the line tangent to the curve of intersection of the two surfaces $x^2 + y + 2z = 4$ and $y = 1$ at $P_0(1, 1, 1)$.
3. (12) Let $y = uv$. If u is measured with an error of 2% and v is measured with an error of 3%, estimate the percentage error in the calculated value of y .
4. (14) Find all local minima, local maxima, and saddle points of the function given below. You should evaluate the function at each critical point.

$$f(x, y) = x^3 + y^3 - 3xy + 15.$$

5. (16) Find the absolute maximum and minimum values of $f(x, y) = x^2 + xy + y^2 - 3x + 3y$ on the region R that is the part of the line $x + y = 4$ lying in the first quadrant.
6. (12) Evaluate the double integral over the given region R .

$$\iint_R xye^{xy^2} dA, \quad R : 0 \leq x \leq 2, \quad 0 \leq y \leq 1.$$

7. (14) Sketch the region of integration, and write an equivalent integral with the order of integration reversed. Then evaluate this reverse ordered integral.

$$\int_0^1 \int_{x^2}^x \sqrt{x} dy dx.$$

8. (6) Decide whether each of the following statements is *True* or *False*. **Justify** your answer.
 - (a) A point that gives the absolute maximum of a function in a given region R must also be a local maximum of the function.
 - (b) Swapping the lower and upper limits of both integrals in a double integral leaves the value of the double integral unchanged.