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7. (14) Sketch the region of integration, and write an equivalent integral with the order of

integration reversed. Then evaluate this reverse ordered integral.
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6. (12) Evaluate the double integral over the given region R.
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8. (6) Decide whether each of the following statements is True or False. Justify your answer.

(a) A point that gives the absolute maximum of a function in a given region R must also be
a local maximum of the function.

(b) Swapping the lower and upper limits of both integrals in a double integral leaves the
value of the double integral unchanged.
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3. (12) Let y = uv. If u is measured with an error of 2% and v is measured with an error of
3%, estimate the percentage error in the calculated value of y.
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5. (16) Find the absolute maximum and minimum values of f(z,y) = 24 ay+yt - 3u+dy
on the region R that is the part of the line  +y =4 lying in the first quadrant.
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4. (14) Find all local minima, local maxima, and saddle points of the function given below. You
should evaluate the function at each critical point.
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