
Principles of Optimization (Fall 2024)
Simplex Method in Matrix Form, and Sensitivity Analysis

Note: Most of the material discussed in this handout will also be covered in the lecture notes.

1 Matrix Form of Simplex Method

Consider the standard form max-LP given in matrix-form:

max z = cTx
s.t. Ax = b

x ≥ 0.
(1)

Notice that cT represents the transpose of c. The necessary slack and surplus/artificial variables have
already been added (and hence we have all constraints in the = form). Here, A is an m×n matrix (i.e.,
m rows and n columns), b is an m-vector, c and x are n-vectors. Thus, the n variables (represented
as x) includes the slack/surplus/artificial variables.

Suppose we know which of the n variables are basic in the optimal tableau. Since there are m
constraints, there will be m basic variables and (n −m) non-basic variables. Grouping all the basic

variables together (and all the non-basic variables together), we split the vector x into
[
xB

xN

]
, where

xB denotes the m basic variables, and xN the non-basic variables. Subsequently, we also group the
columns of A corresponding to the variables xB into the m × m matrix B, and the remaining non-
basic columns into the m× (n−m) matrix N . The cost vector is similarly divided as cT = [cTB cTN ].
Thus, the starting tableau for the simplex method can be written as follows.

z xB xN rhs
1 −cTB −cTN 0
0 B N b

(2)

Notice here that 0 is the m-vector of all zeros. Applying the simplex method, the optimal tableau
looks something like what is shown below:

z xB xN rhs
1 0 ? ?
0 I ? ?

(3)

We know that the basic variables form the canonical columns in the optimal tableau, thus giving
the identity matrix I as shown. The important task of course is to figure out what each of the ?’s are.
Recall that the steps of the simplex method are equivalent to those of the Gauss-Jordan method (we are
performing elementary row operations in both cases). Hence, we can think of obtaining the optimal
tableau by multiplying the initial tableau by a suitable matrix on the left (which is the elementary or
transformation matrix representing all the ERO’s). Let us call this transformation matrix as T (notice
that it will be an (m+ 1)× (m+ 1) matrix). If you concentrate on the columns of z and xB, you can
see that multiplying by T converts this part of the tableau to the identity matrix:

T ·
[
1 −cTB
0 B

]
=

[
1 0
0 I

]
. (4)
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Hence, we must have that

T =

([
1 −cTB
0 B

])−1

=

[
1 cTBB

−1

0 B−1

]
. (5)

You should check that the inverse of T is indeed as given here. The multiplication looks similar to the
multiplication of 2×2 matrices, except that the elements themselves are matrices or vectors. Knowing
T , we can write the optimal tableau as follows.[

1 cTBB
−1

0 B−1

]
·
[
1 −cTB −cTN 0
0 B N b

]
=

[
1 0 −cTN + cTBB

−1N cTBB
−1b

0 I B−1N B−1b

]
. (6)

Thus, the optimal objective function value is given by z∗ = cTBB
−1b, and the optimal solution is

given by xB = B−1b, xN = 0.

We will use the Farmer Jones example to illustrate the various cases of sensitivity analysis that we
want to study. To make the example interesting, the objective function coefficient of acres of wheat
(x2) will be set at 25 (as opposed to the original value of 100—think about the price per bushel of
wheat being set at $1 in place of $4). The LP is given below.

max z = 30x1 + 25x2 (total revenue)
s.t. x1 + x2 ≤ 7 (total acres)

4x1 + 10x2 ≤ 40 (labor hrs)
x1 ≥ 3 (min corn)
x1, x2 ≥ 0 (non-neg)

Notice that the (min corn) constraint has been divided by 10 throughout. The starting tableau and the
optimal tableau for the above LP are the following.

Table 1: Starting tableau
z x1 x2 s1 s2 e3 a3 rhs
1 −30 −25 0 0 0 M 0
0 1 1 1 0 0 0 7
0 4 10 0 1 0 0 40
0 1 0 0 0 −1 1 3

Table 2: optimal tableau
z x1 x2 s1 s2 e3 a3 rhs
1 0 5 30 0 0 M 210
0 0 1 1 0 1 −1 4
0 0 6 −4 1 0 0 12
0 1 1 1 0 0 0 7

The variables that are basic in the optimal tableau are xT
B = [e3 s2 x1], with the optimal solution given

by x1 = 7, s2 = 12, e3 = 4, and z∗ = 210. Hence, cTB = [0 0 30], and the matrix B and its inverse
are as given below.

B =

 0 0 1
0 1 4

−1 0 1

 , and B−1 =

 1 0 −1
−4 1 0
1 0 0

 .
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Check the inverse of B. In fact, we can read of B−1 from the optimal tableau! Note that the
element in the right-bottom position of T is B−1. Hence, if some of the columns in the initial tableau
had the identity matrix I in the rows 1 to m, then the same columns will have B−1 in the optimal
tableau. For example, if the non-basic part of A were in fact identity, i.e., N = I , then in the optimal
tableau, we will have (under the columns of xN ) B−1N = B−1I = B−1.

At the same time, the slack and artificial variables indeed form the identity matrix in the initial tableau
(before converting it to canonical form) – see the columns of s1, s2, a3 in the initial tableau (Table 1).
Hence, B−1 can be read off from the columns of s1, s2, and a3 from the optimal tableau (check to
make sure that this observation indeed is true).

2 Sensitivity Analysis

We are now ready to consider the various cases of sensitivity analysis. The optimal tableau will remain
optimal as long as

1. −cTN + cTBB
−1N ≥ 0 (for a max-LP, all entries in the z-row should be non-negative for opti-

mality), and

2. B−1b ≥ 0 (in order to maintain feasibility).

We will use these two conditions to check whether the current basis still remains optimal after one (or
more) of the parameters is (are) changed.

2.1 Changing cj when xj is non-basic

Here, xj is one of the variables in xN . We denote the column of N corresponding to xj by aj . Consider
changing cj to cj + ∆. From Equation (6), we can see that the only entry in the optimal tableau that
possibly changes is the xj-entry in Row-0. As seen from the optimal tableau for the Farmer Jones
problem, x2 is a non-basic variable. Consider changing the objective function coefficient of x2 from
25 to 25 + ∆ (you could consider the yield per acre of wheat changing from 25 to 25 + ∆). Our goal
is to find the range of values of ∆ for which the current basis still remains optimal. The new entry for
x2 in Row-0 of the optimal tableau is

c̃2 = −(25 + ∆) + cTBB
−1a2 = (−25−∆) +

[
0 0 30

]  1 0 −1
−4 1 0
1 0 0

 1
10
0


= (−25−∆) +

[
30 0 0

]  1
10
0

 = 5−∆.

Notice that a2 is the column of the matrix A corresponding to x2. We need c̃2 ≥ 0 for the current
basis to remain optimal (Condition (1)). Hence, the range of values of ∆ for which the current basis
remains optimal is ∆ ≤ 5. Notice that the optimal solution and the optimal objective function value
do not change when ∆ is in this range. Also, recall that the optimal solution was to farm corn in all
the 7 acres available (x1 = 7, x2 = 0 in the optimal solution). With ∆ ≤ 5, the revenue per acre of
wheat is ≤ 30 (which is the value for corn). At the same time, each acre of wheat requires more hours
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of labor (10) than an acre of corn (4). There is no minimum level of wheat production required either.
Hence, it makes sense not to farm any wheat. If the revenue per acre of wheat becomes higher than
that of corn (> 30), one should farm some acres of wheat in order to make the maximum revenue.

This value, 5, is called the reduced cost of the non-basic variable x2. The reduced cost of a non-
basic variable (in the optimal tableau) of a max-LP is defined as the maximum amount by which its
objective function coefficient can increase while the current basis still remains optimal. Hence, if
the objective function coefficient of wheat changes to 32 (i.e., ∆ = 7), the current basis is no longer
optimal – in fact, it is sub-optimal in the sense that the value of x2 can be increased from 0 to some
positive value and the value of z∗ can be increased. In this case, in order to find the new optimal
tableau, one will have to perform one more simplex pivot (with x2 as the entering variable).

2.2 Changing cj when xj is basic

Here, xj is one of the variables in xB. Consider changing the objective function coefficient of x1 from
30 to 30 + ∆. cTB also changes here – cTB =

[
0 0 30 + ∆

]
. Since cB changes, all the entries in

Row-0 corresponding to xN (i.e., all the non-basic variables) could possibly change. The new entries
in Row-0 under xN are given by

c̃TN = −cTN + cTBB
−1N =

[
−25 0 M

]
+
[
0 0 30 + ∆

]  1 0 −1
−4 1 0
1 0 0

 1 1 0
10 0 0
0 0 1


=

[
−25 0 M

]
+
[
30 + ∆ 30 + ∆ 0

]
=

[
5 + ∆ 30 + ∆ M

]
.

Using the Condition (1) again, the current basis remains optimal if all entries in c̃N are ≥ 0, i.e.,
if 5 + ∆ ≥ 0 and 30 + ∆ ≥ 0. Hence, the range of values of ∆ for which the current basis remains
optimal is ∆ ≥ −5. For this range, the revenue per acre of corn will be at least as big as the value for
wheat (25), and hence one will not grow any wheat. If ∆ = −8 for example, then each acre of wheat
will yield a higher revenue than an acre of corn (25 and 22 respectively). The current basis becomes
sub-optimal in this case. In order to find the new optimal solution, one will have to pivot x2 into the
basis (perform one more simplex pivot).

2.3 Changing the right-hand-side (bi) of the i-th constraint

Consider changing bi to bi+∆. From Equation (6), we can see that the entries in the rhs (last) column
will change. For example, consider changing the rhs of acres constraint to 7 + ∆ (i = 1, i.e., the first
constraint here). This change models the situation where Farmer Jones has some extra land to farm.
The new rhs vector can be written as

b̃ =

7 + ∆
40
3

 =

 7
40
3

+

∆0
0

 . Hence,

B−1b̃ = B−1b+

 1 0 −1
−4 1 0
1 0 0

∆0
0

 =

 4
12
7

+

 ∆
−4∆

∆

 =

 4 + ∆
12− 4∆
7 +∆

 = x̃B. (7)
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Using the Condition (2), in order for the current basis to still remains optimal, we need all elements
of x̃B ≥ 0. In other words, 4 + ∆ ≥ 0, 12 − 4∆ ≥ 0, and 7 + ∆ ≥ 0, which give ∆ ≥ −4, ∆ ≤
12/4 = 3, ∆ ≥ −7, or −4 ≤ ∆ ≤ 3. The current basis remains optimal as long as ∆ is in this
range. Notice that, when ∆ > 3, Jones will have more than 10 acres to farm, but could only use 10
due to the limit on the labor hours (why?). Thus the optimal solution will change when ∆ = 4, for
instance. Similarly, when ∆ = −4.5, the minimum level of corn cannot be satisfied (as Jones will
have only 2.5 acres), and hence the current basis will no longer be optimal.

For −4 ≤ ∆ ≤ 3, the new optimal objective function is given by (using the expression for B−1b̃
from Equation (7))

z̃∗ = cTBx̃B = cTBB
−1b̃ =

[
0 0 30

]  4 + ∆
12− 4∆
7 +∆

 = 210 + 30∆.

Hence the shadow price of the “acres” constraint is 30. Recall that the shadow price of a constraint is
defined as the improvement (increase for a max-LP) in the objective function value for a unit increase
the rhs value of the constraint.

2.4 Changing the column (both cj and aj) when xj is non-basic

The general method outlined above can also be used to calculate the new optimal tableau (and optimal
basis) when more than one parameter is changed. For example, consider changing the objective
function coefficient of x2 (which is non-basic) from 25 to 35, and at the same time, changing its
coefficient in the “labor hours” constraint from 10 to 8 (i.e., the number of labor hours required for an
acre of wheat is now 8). Using the formulas given in Equation (6), the new entries in the column of
x2 are given by

−c2 + cTBB
−1a2

———————
B−1a2

 =


−35 +

[
30 0 0

] 10
0


—————————– 1 0 −1

−4 1 0
1 0 0

18
0




=


−5
—
1
4
1

 .

Notice that we used the result for cTBB
−1 =

[
30 0 0

]
, which we already saw in section 2.1. Since

the modified entry in the Row-0 under x2 is no longer non-negative (it is −5), the current basis is no
longer optimal. Intuitively, it required less number of labor hours and generates more revenue to farm
an acre of wheat after these changes. In order to find the new optimal tableau, the column of x2 in
the original optimal tableau should be replaced with the one derived above, and one more simplex
pivot should be performed. The new optimal solution thus obtained is e3 = 1, x2 = 4, x1 = 3, with
z̃∗ = 225.


