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Exercise 3.2 (Optimality conditions) Consider the problem of minimizing
¢’x over a polyhedron P. Prove the following:

(a) @olution x is optimal If and only (f\c’/dz 0 for every @
irection d at X ) B

(b) A feasible solution x is the unique optimal solution if and only if ¢'d > 0
for every nonzero feasible direction d at x.
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Exercise 3.3 Let x be an element of the standard form polyhedron P = {x €

R™ | Ax :Wove that a vecter_d € R" is a feasible directi@if

and only if = 0 and d; > 0 for every ¢ such that @ A
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Exercise 3.6 (Conditions for a unique optimum) Let x be a basic feasible
solution associated with some basis matrix B. Prove the following:

(a) If the reduced cost of every nonbasic variable is positive, then x is the
unique optimal solution.
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