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Exercise 3.2 (Optimality conditions) Consider the problem of minimizing
¢’x over a polyhedron P. Prove the following:

(a) A feasible solution x is optimal if and only if ¢’'d > 0 for every feasible
direction d at x.°\ :
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Exercise 3.3 Let x be an element of the standard form polyhedron P = {x €
R™ | Ax = b, x > 0}. Prove that a vector d € R" is a feasible direction at x if
and only if Ad =0 and d; > 0 for every ¢ such that =; = 0.
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