

MATH464- Lecture 27 (04/18/2023)

Today: * Bland's rule in Matlab
 * Lw and other problems from BT-1LD

Bland's rule

Simply put, this is the "minimum index rule"—the non-basic x_j with $c_j < 0$ and smallest j enters, and in case of a tie, the basic variable x_e with the smallest e (that ties) leaves. Since we order the variables x_1, \dots, x_n by default, choosing the entering variable is easy—just pick the leftmost one. But choosing the leaving variable, while easy to do by hand, will require a bit more work.

We will maintain and update the basis \mathcal{B} (stored as Bnd in Matlab). See the session from today's lecture for details:

https://www.math.wsu.edu/faculty/bkrishna/FilesMath464/S23/Software/Lec27_04182023_Session.txt

Now let's consider a problem not assigned in the homework.

Exercise 3.19 While solving a standard form problem, we arrive at the following tableau, with x_3 , x_4 , and x_5 being the basic variables:

		x_2				
		δ	$-2=0$	0	0	0
	4	-1	η	1	0	0
x_4	1	α	-4	0	1	0
$\beta=0$		γ	3	0	0	1

$\xrightarrow{\frac{2}{3}}$

$R_0 + \left(\frac{2}{3}\right)R_3$

$\delta + \left(\frac{2}{3}\right)r$

The entries α , β , γ , δ , η in the tableau are unknown parameters. For each one of the following statements, find some parameter values that will make the statement true.

- (a) The current solution is optimal and there are multiple optimal solutions.
- (b) The optimal cost is $-\infty$.
- (c) The current solution is feasible but not optimal.

(a) Notice x_2 could enter (as $c'_2 = -2 < 0$). Thus the current bfs is optimal only if x_2 could enter but not change the cost. In other words, we need a degenerate bfs here. If $\beta=0$ and $r > 0$, we could get $\theta^* = 0$ (min-ratio). Hence x_2 could enter without changing the cost. The EROs give $c'_i = \delta + \left(\frac{2}{3}\right)r$. If $\delta + \left(\frac{2}{3}\right)r \geq 0$, the resulting tableau is optimal, and hence so is the current solution, thus giving multiple optimal solutions. $\boxed{\beta=0, r > 0, \delta + \frac{2}{3}r \geq 0}$

(b) x_2 cannot improve the cost without bound, as we need $\beta \geq 0$ for feasibility. We get unbounded LP with $\delta < 0$, $\alpha \leq 0$, $r \leq 0$ ($\beta \geq 0$ is needed for feasibility).

(c) We need $\beta > 0$, as then we get $\theta^* = \min\left(\frac{\beta}{3}, \frac{4}{\eta}\right)$ if $\eta > 0$. $\theta^* > 0$ here, and hence x_2 could enter to improve the solution. We also need either $\delta \geq 0$, or if $\delta < 0$, then $\alpha > 0$ or $r > 0$. Another option is $\delta < 0$, and $\alpha < 0$, $r < 0$, when the LP will be unbounded.

Hw10 Problems

27-3

Exercise 4.3 The purpose of this exercise is to show that solving linear programming problems is no harder than solving systems of linear inequalities.

Suppose that we are given a subroutine which, given a system of linear inequality constraints, either produces a solution or decides that no solution exists. Construct a simple algorithm that uses a single call to this subroutine and which finds an optimal solution to any linear programming problem that has an optimal solution.

Subroutine : feasibility of a system of linear inequalities.

Use LP duality to come up with a system of linear inequalities that you could input to the subroutine only once.

$$(P) \quad \begin{aligned} & \min \bar{c}^T \bar{x} \\ & \text{s.t. } A\bar{x} = \bar{b} \\ & \quad \bar{x} \geq \bar{0} \end{aligned}$$

$$\max \bar{p}^T \bar{b} \\ \text{s.t. } \bar{p}^T A \leq \bar{c} \quad (D)$$

Hint: weak/strong duality.

$$\bar{c}^T \bar{x} \geq \bar{p}^T \bar{b} \quad \text{for feasible } \bar{x}, \bar{p}$$

for (P) and (D).

$$\begin{array}{c} \min \bar{c}^T \bar{x} \\ \downarrow \\ \text{optimality} \rightarrow \\ \uparrow \max \bar{p}^T \bar{b} \end{array}$$

If $\bar{c}^T \bar{x} = \bar{p}^T \bar{b}$, then \bar{x}, \bar{p} are optimal for (P) and (D), respectively.

Consider the system

$\bar{A}\bar{x} = \bar{b}$ $\bar{x} \geq \bar{0}$ $\bar{p}^T A \leq \bar{c}$ $\bar{c}^T \bar{x} = \bar{p}^T \bar{b}$	$\left. \begin{array}{l} \text{(P) feasibility} \\ \text{(D) feasibility} \\ \text{optimality} \end{array} \right\}$
---	--

Call subroutine once with this system as input.

Bonus: Think about how to handle the situation if the subroutine says the system is infeasible!

Farkas' lemma:

Exercise 4.26 Let A be a given matrix. Show that exactly one of the following alternatives must hold.

(a) There exists some $x \neq 0$ such that $Ax = 0, x \geq 0$

(b) There exists some p such that $p^T A > 0'$.

*we want an equivalent system
that is \geq , not $>$.*

The crux is to come up with an appropriate pair of primal-dual LPs, and follow arguments presented in class.

$$(P) \quad \begin{array}{l} \max \bar{1}^T \bar{x} \\ \bar{A} \bar{x} = \bar{0} \\ \bar{x} \geq \bar{0} \end{array} \quad (D) \quad \begin{array}{l} \min \bar{p}^T \bar{0} \\ \bar{p}^T \bar{A} \geq \bar{1} \end{array}$$

Suppose (b) holds. Then (D) is feasible. (D) is not unbounded, as $\bar{p}^T \bar{0} = 0$ for any \bar{p} . So (D) has optimal cost = 0. Hence for (P), we get that the only optimal solution is $\bar{x} = \bar{0}$. (as $\bar{1}^T \bar{x} = \sum x_i = 0$ optimal $\Rightarrow \bar{x} = \bar{0}$ is the only optimal solution). So (a) cannot hold.