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BEEF  beef $3.19 Bl B2

CHK ‘;F'Lcke“ ;?)3 BEEF  60% 20% 10% 15%

FISH is 22 i : ,

HAM  ham 2.89 RHE : | 3 ?2 | g

MCH  macaroni & cheese 1.89 i -

MTL meat loaf 1.99 HAM 40 40 a 10

SPG  spaghetti 1.99 MCH 15 35 15 15

TUR  turkey 2.49 ML 70 30 15 15

SPG 25 50 25 15
TUR 60 20 15 10
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set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >=f_min[j];

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min([i];

param amt {NUTR,FOOD} >= 0;
var Buy {j in FOOD} >=f_min[j], <= f_max][j];
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy][j];

subject to Diet {i in NUTR}:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max{i];

AMPL  Sessiom:

setNUTR:=AB1B2C;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max:=

BEEF 3.19 0 100
CHK 259 0 100
FISH 229 0 100
HAM 289 0 100
MCH 189 0 100
MTL 199 0 100
SPG 199 0 100
TUR 249 0 100;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

param amt (tr):

A C B1 B2:=
BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10;

ampl: option solver cplex;
ampl: model "c:/Program
Files’/AMPL/ampl_mswin64/models/diet.mod";

ampl: solve;
CPLEX 20.1.0.0: optimal solution; objective 88.2
1 dual simplex iterations (0 in phase 1)

ampl: display Buy;

ampl: data "c:/Program Files/AMPL/ampl_mswin64/models/diet.dat";
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Exercise 1.8 (Road lighting) €6nsider a road divided into n segments that is
tlluminated by m lamps. L {Jt, be the power of the jth lamp. The |]|11|r|1uc1t101© \hs

of the ztg q egment is assumed fo be L R uhu are known coeflicien
[.rEt 1 “u 0‘0(‘7\-

€ desired illumination of Tm:]
Ve are interested in choosing the ian bowers py so that the illuminations
I; are close to the desired illuminations Provide a reasonable linear program-
ming formulation of this problem. Note that the wording of the problem is loose
and there is more than one possible formulation.
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Exercise 1.11 (Optimal currency conversion) Suppose that there are,N/ We /DR;W b
available currencies, and assume that one unit of currency i can be exchanged for wee. n' A ek
ri; units of currency j. (Naturally, we assume that ri; > 0.) There also certain kac// .
regulations that impose a limit u; on the total amount of gurrency 7 that can be Ins ‘
exchanged on any given day. Suppose that we start with & units of currency 1 and VN R I} £
that we would like to maximize the number of units of currency, & that we end up M}. e
with at the end of the day, through a sequence of currency transactions. Provide A

a linear programming formulation of this problem. Assume that for any sequence

i1, ..., i of currencies, we have Ti,i,Tigis - Tip_1ixTipin < 1, which means that WV‘%#""Y’/
wealth cannot be multiplied by goi rough a cycle of currencies.

V2 cha yofes
i;)c Z}:wwf‘ of currency i ol an ke z/xcﬂmgec/
b osmount 5F WY"W% 1 af <t

Asswn?‘h‘m O\Q)ev& Y@"S: C@M\b{’ O‘ade ()C\Y‘m,% oL Yrenued 'JU Makﬂ N“’M%!

e §oY— E7F
%U"- YO

= o0 15— (oY — 5 £ —> Rc$ X
DbE 0005 Ly gce —> 0%

1)



&>

%VY&WMMM#W

(u,oJD)b umk of Cm’r&naj, 1 MWW
s poesitle

Lt led # umfs 6‘9 wv:remagm U’(otmrngﬂd +o CMWW@ 3/
(F 3/ 1(12!2 n} 35%(2 nz

e /'\QQ"M Zéj 757,1/@0
‘fbéu, n/} &M,SDMOPWW%WWW%

Cu rren " n

X}?:o )sz, C{y% »\sz
Loel] %)Amdb e %mrw@a%fan ‘N T upd ekl



