

## Computational Topology (Spring 2024): Homework 2

- You **must email your submission** as a **PDF file** to kbala@wsu.edu. You could write answers by hand, and scan or take photos of the writings. Put all the images in a PDF file, though.
- Your file name should identify you in the following manner. If you are Napoleon Dynamite, you should name your submission NapoleonDynamite\_Hw2.pdf. If you want to add more bits to the title, e.g., Math529, you could name it NapoleonDynamite\_Math529\_Hw2.pdf, for instance. But you should start the file name with NapoleonDynamite. And please avoid white spaces in the file name.
- Begin the SUBJECT of your email submission with the same FirstnameLastname, expression, e.g., "NapoleonDynamite Hw2 submission".
- This homework is due by 5:00 PM on Tuesday, February 6.
- 1. (35) List all the ways in which the sides of a rectangle can be identified in pairs. In each case, indicate which of the surfaces introduced in class (in Lecture 4) if any, does the resulting object represent (we saw the 2-sphere ( $\mathbb{S}^2$ ), torus ( $\mathbb{T}^2$ ), Möbius strip, projective plane ( $\mathbb{R}P^2$ ), and the Klein Bottle ( $\mathbb{K}^2$ ).
- 2. (20) The following are *potential* triangulations of the torus  $\mathbb{T}^2$  and the real projective plane  $\mathbb{R}P^2$ , respectively. Decide if they are indeed correct triangulations of the two spaces. Justify your answers.



- 3. A flag complex... Moved to the next homework...
- 3. (30) Describe the space represented by each of the following three triangulations. Also calculate the Euler characteristic  $\chi$  in each case, and compare it to the  $\chi$  values of standard 2-manifolds we discussed in class ( $\mathbb{S}^2$ ,  $\mathbb{T}^2$ , etc.).

