
Math 567 (Spring 2025)

Heuristics and Approximation
Algorithms for the TSP

From the chapter by D.S. Johnson and C.H. Papadimitriou

in the book “The Traveling Salesman Problem”

The Traveling Salesman Problem (TSP)

Given : A finite set of points (cities) V and the costs
(distances) Cij between each pair of points i,j ∈ V

A tour : A circuit which passes exactly once through each
 point in V

TSP : Find a tour of minimum cost (distance)

A

B C

F

D E

G
H

I

16

2

4 3

3

1

1 1

1

22
2 4

42

3

4

3

A

B C

F

D E

G
H

I

1 3

3

1

1

22

2

3

The tour which we’re going to take

TSP (definition)

NP-hardness of TSP

Conclusions

Heuristics & performance guarantees

Approximation algorithms

MST algorithm

Nearest merger algorithm

Insertion algorithms

Christofides’ Algorithm

Two classes of optimization problems : P and NP-hard

P set of problems which could be solved in
 polynomial time (“easy to solve”)

NP-hard set of problems not known to be solvable
 in polynomial time (“hard to solve”)

TSP is NP -hard

Heuristics Algorithms not guaranteed to find the optimal solution,
 but find a solution “reasonably close” to the optimal
 solution in reasonable amount of time

Performance Guarantees: provable bounds on how far the
constructed tour can be from the optimal tour, in the worst case

Approximation Algorithms for TSP

Polynomial ε-approximation algorithm: ε-approximation algorithm that runs in
 polynomial time

Every tour is at least as good as (or better than) the bound

A is an ε-approximation algo for the TSP if, for each instance I of the problem,
and for an error bound ε > 0, A gives a tour S of length l(S) such that

l(S) ≤ (1+ ε) opt(I) where opt(I) - length of the minimal TSP tour

Result: TSP has no polynomial ε-approximation scheme for any ε > 0

Euclidean setting: shortest distance between two points (cities) is
 a straight line (direct route)

Which of the solution methods for the TSP produce polynomial

ε-approximation algorithms, and for what ε ?

Cik ≤ Cij + Cjk for any i,j, and k

=> costs(distances) are symmetric { Cij = Cji }

=> costs(distances) satisfy the triangle inequality

Assumptions

Minimum Spanning Tree algorithm

Spanning tree : Set of n-1 edges which join the n vertices
 (cities) into a single connected component

Minimum spanning tree : A spanning tree with the minimum cost

Deletion of a single edge from a traveling salesman
tour gives a spanning tree

opt(TSP) ≥ MST (lower bound)

Upper Bound on the Optimal Traveling Salesman tour

Depth-first traversal of the minimum spanning tree

This visits all cities

Length of tour = 2(MST) ≤ 2 opt(TSP)

Not a Traveling salesman tour as some of the cities might be visited more
than once!

depth first traversal tour

H

I

G

E

A

B C D

A

B C

F

D E

G
H

I

1

23

1

1

22
2

minimum spanning tree

F

A

C D

A
B C

F

D
E

GH

I

Convert this tour to a traveling salesman
tour using shortcuts

Instead of going back to the predecessor node,
jump to the next as yet unvisited node

By triangle inequality,

MST tour ≤ depth first traversal tour

MST tour

MST tour ≤ 2 opt(TSP)
1

2

1

22 4

2

1

6

MST algorithm is 1-approximate for the TSP

Skip already visited nodes

Other 1-approximate algorithms

Nearest merger algorithm
Start with n partial tours (each consisting of a single city)

Merge tours successively until a single tour containing all
the cities is obtained

Rule for merging two partial tours T and T’

(i,j): edge in T (k,l): edge in T’

min {Cik + Cjl - Cij - Ckl }

add (i,k) and (j,l)

delete (i,j) and (k,l)

T
T’

i

l

k

j

If there are more than one partial tour, the tours T and T’ to be merged
are chosen such that min{Cij : i ∈ T, j ∈ T’} is as small as possible

Nearest merger algorithm in action

Length of nearest merger tour = opt(TSP) = 18

step 1) start with a single city (arbitrarily chosen)

step 2) If all cities are not included in the current
 partial tour T, select a city k ∉ T to be inserted

into the partial tour

step 3) Delete (i,j), and insert (i,k) and (k,j)

T
j

i

k

Insertion Algorithms

Cost of inserting k into the tour = Cik + Ckj - Cij

1) Nearest Addition algorithm

T
j

i

k

step 1) start with a single city (arbitrarily chosen)

step 2) If all cities are not included in the current
 partial tour T, find cities j and k, j ∈ T, k ∉ T,

such that Ckj is minimized

step 3) Delete (i,j), where i is the neighbor (one of the
two nodes immediately near j in the tour)
and insert (i,k) and (k,j)

Nearest addition algorithm in action

Length of nearest addition tour = opt(TSP) = 18

2) Nearest insertion algorithm

Chooses k (city to be inserted) as in the nearest addition algorithm.

But k is inserted between i’ and j’ such that Ci’k + Ckj’ - Ci’j’ is minimized

3) Cheapest insertion algorithm

The new city k to be inserted (in step 2 of the nearest addition algorithm)
is chosen such that Cik + Ckj - Cij is minimized and inserted accordingly

The proofs for the upper bound for the nearest merger and insertion
algorithms are variants of the proof for the MST algorithm

All the above algorithms are 1-approximate for the TSP

Christofides’ Algorithm

Eulerian graph : Contains a tour which passes through every edge
 exactly once (Eulerian tour)

Step 1) Find a minimum spanning tree (T) for the given set of vertices(cities)

Step 2) Take the vertices with odd degree alone

Step 3) Find a minimum weighted matching (M) for these vertices

Step 4) Add M to T. This gives an Eulerian graph that has minimum
 length among those that contain T

Step 5) Convert the Eulerian tour of the above graph into a traveling
salesman tour using shortcuts

All vertices have even degree in an Eulerian graph

Idea : start with the MST, find an Eulerian graph containing the MST,
convert the Eulerian tour to a TSP tour using shortcuts

MST (T) Minimum matching (M)

Eulerian Tour

A
B C

F

D
E

GH

I

A
B C

F

D
E

GH

I

Eulerian Traveling salesman tour

A
B C

F

D
E

GH

I

B C

F

D E

G
H

I

1

23

1

1

22
2

4

1

1

Upper Bound provided by Christofides’ algorithm

Opt. tour

M

M’

Odd degree vertex

The TSP tour determines two matchings M and M’

by triangle inequality

length(M) + length(M’) ≤ Opt(TSP) min(M,M’) ≤ (1/2) opt(TSP)

min weighted matching ≤ (1/2)opt(TSP) length(MST) ≤ opt(TSP)

Eulerian traveling salesman tour ≤ (3/2) opt(TSP)

Christofides’ algorithm is (1/2)-approximate for the TSP

Conclusions

TSP is NP- hard

MST algorithm(s)

Christofides’ algorithm: (3/2)-optimal (best bound)

No ε-approximation schemes for the general TSP

With costs(distances) being symmetric and satisfying the triangle inequality

Nearest merger algorithm

Insertion algorithms

2-optimal (upper bound)

A

B
C

F

D E

G

H

I

1
6

2

4
3

3

1

1 1

1

22

2
4

42

3

4

3

Optimal tour

A

B C

F

D E

G

H

I

1

2
3

1

1

22
2

Minimum spanning tree

	Math 567 (Spring 2025)
	The Traveling Salesman Problem (TSP)
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

