
Math 567 (Spring 2025)

Heuristics and Approximation 
Algorithms for the TSP

From the chapter by D.S. Johnson and C.H. Papadimitriou 

in the book “The Traveling Salesman Problem”



The Traveling Salesman Problem (TSP)

Given : A finite set of points (cities)  V  and the costs 
(distances) Cij between each pair of points i,j ∈ V

A tour : A circuit which passes exactly once through each    
  point in  V

TSP     : Find a tour of  minimum  cost (distance)
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The tour which we’re going to take 

TSP (definition)

NP-hardness of TSP

Conclusions

Heuristics & performance guarantees

Approximation algorithms

MST algorithm

Nearest merger algorithm

Insertion algorithms

Christofides’ Algorithm



Two classes of optimization problems : P and NP-hard

P      set of problems which could be solved in      
     polynomial time (“easy to solve”)

NP-hard   set of problems not known to be solvable      
     in polynomial time (“hard to solve”)

TSP is  NP -hard

Heuristics Algorithms not guaranteed to find the optimal solution, 
       but  find a solution “reasonably close” to the optimal 
       solution in reasonable amount of time



Performance Guarantees:  provable bounds on how far the 
constructed tour can be from the optimal tour, in the worst case

Approximation Algorithms for TSP

Polynomial ε-approximation algorithm: ε-approximation algorithm that runs in 
          polynomial time

Every tour is at least as good as (or better  than) the bound

A is an ε-approximation algo for the TSP if, for each instance I of the problem, 
and for an error bound ε > 0, A gives a tour S of length l(S) such that

l(S) ≤ (1+ ε) opt(I) where opt(I) - length of the minimal TSP tour



Result: TSP has no polynomial ε-approximation scheme for any ε > 0

Euclidean setting: shortest distance between two points (cities) is 
        a straight line (direct route)  

Which of the solution methods for the TSP produce polynomial 

ε-approximation algorithms, and for what ε ?

Cik ≤ Cij  +  Cjk     for any i,j, and k

=>  costs(distances) are symmetric { Cij = Cji }

=>  costs(distances) satisfy the triangle inequality

Assumptions



Minimum Spanning Tree algorithm

Spanning tree :    Set of  n-1 edges which join the n vertices 
     (cities) into a single connected component

Minimum spanning tree : A spanning tree with the minimum cost

Deletion of a single edge from  a traveling salesman 
tour gives a spanning tree

opt(TSP) ≥ MST (lower bound)



Upper Bound on the Optimal Traveling Salesman tour

Depth-first traversal of the minimum spanning tree

This visits all cities

Length of tour = 2(MST) ≤ 2 opt(TSP)

Not a Traveling salesman tour as some of the cities might be visited more 
than once!

depth first traversal tour
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Convert this tour to a traveling salesman 
tour using  shortcuts

Instead of going back to the predecessor node, 
jump to the next as yet unvisited node

By triangle inequality,

MST tour ≤ depth first traversal tour

MST tour

MST tour  ≤ 2 opt(TSP)
1

2

1

22 4

2

1

6

MST algorithm is 1-approximate for the TSP

Skip already visited nodes



Other 1-approximate algorithms

Nearest merger algorithm
Start with n partial tours (each consisting of a single city)

Merge tours successively until a single tour containing all 
the cities is obtained

Rule for merging two partial tours T and T’

(i,j): edge in T   (k,l): edge in T’

min  {Cik + Cjl - Cij - Ckl }

add (i,k) and (j,l)

delete (i,j) and (k,l)

T
T’

i

l

k

j

If there are more than one partial tour, the tours T and T’ to be merged 
are chosen such that min{Cij : i ∈ T, j ∈ T’} is as small as possible



Nearest merger algorithm in action

Length of nearest merger tour = opt(TSP) = 18



step 1) start with a single city (arbitrarily chosen)

step 2) If all cities are not included in the current 
 partial tour T, select a city k ∉ T to be inserted 

into the partial tour

step 3) Delete (i,j), and insert (i,k) and (k,j)

T
j

i

k

Insertion Algorithms

Cost of inserting  k into the tour = Cik + Ckj - Cij



1) Nearest Addition algorithm

T
j

i

k

step 1) start with a single city (arbitrarily chosen)

step 2) If all cities are not included in the current 
 partial tour T, find cities j and k, j ∈ T, k ∉ T, 

such that Ckj is minimized

step 3) Delete (i,j), where i is the neighbor (one of the 
two nodes immediately near j in the tour)      
and insert (i,k) and (k,j)



Nearest addition algorithm in action

Length of nearest addition tour = opt(TSP) = 18



2) Nearest insertion algorithm

Chooses k (city to be inserted) as in the nearest addition algorithm. 

But k is inserted between i’ and j’ such that Ci’k + Ckj’ - Ci’j’  is minimized

3) Cheapest insertion algorithm

The new city k to be inserted (in step 2 of the nearest addition algorithm) 
is chosen such that  Cik + Ckj - Cij   is minimized and inserted accordingly

The proofs for the upper bound for the nearest merger and insertion 
algorithms are variants of the proof for the MST algorithm

All the above algorithms are 1-approximate for the TSP



Christofides’ Algorithm

Eulerian graph :   Contains a tour which passes through every edge 
 exactly once ( Eulerian tour)

Step 1) Find a minimum spanning tree (T) for the given set of vertices(cities)

Step 2) Take the vertices with odd degree alone

Step 3) Find a minimum weighted matching (M) for these vertices

Step 4) Add M to T.  This gives an Eulerian graph that has minimum 
 length among those that contain T

Step 5) Convert the Eulerian tour of the above graph into a traveling 
salesman tour using shortcuts

All vertices have even degree in an Eulerian graph  

Idea :     start with the MST, find an Eulerian graph containing the MST, 
convert the Eulerian tour to a TSP tour using shortcuts



MST (T) Minimum matching (M)

Eulerian Tour
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Upper Bound provided by Christofides’ algorithm

Opt. tour

M

M’

Odd degree vertex

The TSP tour determines two matchings M and M’

by triangle inequality

length(M) + length(M’) ≤ Opt(TSP) min(M,M’) ≤ (1/2) opt(TSP) 

min weighted matching ≤ (1/2)opt(TSP) length(MST) ≤ opt(TSP)

Eulerian traveling salesman tour ≤ (3/2) opt(TSP)

Christofides’ algorithm is (1/2)-approximate for the TSP  



Conclusions

TSP is NP- hard

MST algorithm(s)

Christofides’ algorithm: (3/2)-optimal (best bound)

No ε-approximation schemes for the general TSP

With costs(distances) being symmetric and satisfying the triangle inequality

Nearest merger algorithm

Insertion algorithms

2-optimal (upper bound)
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