
A Visual Analytics Framework for Analysis of Patient
Trajectories

Kaniz Fatema Madhobi

Washington State University

Pullman, Washington

kanizfatema.madhobi@wsu.edu

Methun Kamruzzaman

Washington State University

Pullman, Washington

md.kamruzzaman@wsu.edu

Ananth Kalyanaraman

Washington State University

Pullman, Washington

ananth@wsu.edu

Eric Lofgren

Washington State University

Pullman, Washington

eric.lofgren@wsu.edu

Rebekah Moehring

Duke Center for Antimicrobial

Stewardship and Infection Prevention

rebekah.moehring@duke.edu

Bala Krishnamoorthy

Washington State University

Vancouver, Washington

kbala@wsu.edu

ABSTRACT
The problem of analyzing patient trajectories is fundamental to our

ability to understand and characterize diseases and how we treat

them in our hospitals, and to devise and explore effective alternative

strategies for healthcare. In this paper, we present a new approach

to analyze hospital patient trajectories. Based on visual analytics,

our approach is aimed at aiding the domain scientist (in this case,

a hospital bioinformatician or a data analyst) to visually navigate

and analyze patient health trajectories in a scalable manner. More

specifically, we view the problem as one of structure discovery and

tracking how such structure evolves with time over the course of

patients’ stay at the hospital(s). An ability to scalably track and

view the temporal progression of context variables associated with

patients in conjunction with health indicator variables could pro-

vide vital clues on how practices affect outcomes. Furthermore,

by enabling compact and consolidated views of complex patient

trajectories, our approach can help to delineate subpopulations (i.e.,

subgroups of patients) that show divergent behavior. As a concrete

case study in application and evaluation, we present results and

initial findings on a large patient data set obtained from the Duke

Antimicrobial Stewardship Outreach Network (DASON) database,

with an aim of extracting factors relevant to antibiotic usage and

stewardship in hospitals.

CCS CONCEPTS
•Mathematics of computing→ Paths and connectivity prob-
lems; • Information systems → Data mining; • Human cen-
tered computing → Visualization; • Applied computing →

Health informatics.
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1 INTRODUCTION
The digitization of patient records has become a key instrument of

change in the way biomedical healthcare is administered. Digiti-

zation has resulted in an abundance of data, and that has in turn

resulted in an increased emphasis on scalable analytics and deci-

sion support systems that are primarily data-driven. Consequently,

“data” in the form of patient electronic health records (EHRs) have

exploded over the past decade [6]. While there are still a number of

issues and challenges pertaining to the collection, formatting, cura-

tion, and integration of EHR data, from an analytical standpoint,

one of the lead challenges in the area has been to generate analyti-

cal and computationally scalable frameworks for gleaning useful

“information” from such data, and in the process aid and enable

healthcare providers to improve the quality of decision-making.

In this paper, we focus on a specific type of electronic health

record, namely patient trajectories, obtained from in-patient hospi-

tal records that typically cover a patient’s stay at a hospital from

the day of admission to the day of discharge. These data sets cover

a wide array of treatment activities and all related meta-data asso-

ciated with the health of a patient, as administered by caregivers as

a function of time. Consequently, these data sets represent a trea-

sure trove of information relating to understanding how a patient’s

health changes with every passing day at the hospital. For instance,

these datasets can be very useful in the study of hospital-acquired

infections (HAIs) [13, 15], or for analyzing conditions such as sepsis

[12].

However, mining such information with actionable insights from

hospital records can be significantly challenging owing to a number

of factors, including but not limited to: size, variety, high dimen-

sionality, ontology, etc. [5]. First, the size of these patient records
in large hospital networks could be significantly large, covering

possibly millions of patients treated across hundreds of hospitals

and healthcare locations. Secondly, these large data sets also cover

https://doi.org/10.1145/3307339.3342143
https://doi.org/10.1145/3307339.3342143


a wide variety of patient conditions, treated in hospitals with dif-

ferent healthcare specialties and healthcare practices, and often

different/unstandardized ways to gather patient data. Noise and

missing data introduce an additional layer of complexity into the

analysis of such data. Under these circumstances, trying to un-

derstand how treatment and healthcare practices affect patient

outcomes and to devise effective strategies to help improve those

outcomes, become challenging tasks. The tools and approaches

that are currently used in the area are mostly database-oriented,

where hospital informaticians store and retrieve data using hand-

scripted queries and supplement them with custom pipelines that

use standard statistical and regression tools for analysis.

Contributions: In this paper, we present an alternative ap-

proach to analyze hospital patient trajectories. Our approach, which

is mathematically rooted in topological data analysis [17], is a visual

analytics-based approach aimed at aiding the domain scientist (in

this case, a hospital bioinformatician or a data analyst) to visually

navigate and analyze patient health trajectories in a scalable man-

ner. More specifically, we view the problem as one of “structure

discovery” and tracking how such structure evolves with time over

the course of patients’ stay at the hospital(s). For instance, a patient

could undergo different procedures, get administrated with a vari-

ety of drugs, change units within the hospital—all over the course of

the stay; as the healthcare providers try to continually monitor and

assess health risks and vulnerabilities. An ability to scalably track

and view such temporal progression of context variables associated

with patients, in conjunction with health indicator variables could

provide vital clues on how practices affect outcomes—a key piece of

information toward decision making at the coarser level of hospitals

or units within hospitals. Furthermore, by enabling compact and

consolidated views of complex patient trajectories, our approach

can help in delineating subpopulations (i.e., subgroups of patients)

that show divergent behavior.

As a concrete case study in application and evaluation, we present

results and initial findings on a large patient data set obtained from

the Duke Antimicrobial Stewardship Outreach Network (DASON)

database [2] with an aim of extracting factors relevant to antibiotic

usage and stewardship in hospitals. The DASON database contains

a large collection of patient records from a network of 25 commu-

nity hospitals curated by the Duke University School of Medicine.

Although explained in this context, our approach is generalizable

to analyzing patient trajectory data sets in other contexts.

The rest of the paper is organized as follows: Section 2 presents

a brief overview of related works on patient trajectories and on

topological data analysis applied to health analytics, along with a

statement of how the framework presented in this work is different.

In Section 3, we present our approach to problem modeling and

describe our visual analytics framework. In Section 4, we present

our results and findings on the DASON data set.

2 RELATED WORK
There have been many studies conducted on health registry, in

particular relating to analyzing patient health records. However,

the fraction of studies that focus on studying temporal trajecto-

ries have been relatively small. Giannoula et al. [4] and Jensen

et al. [7] mined temporal patterns from patient disease histories

using a time-analysis framework. Giannoula et al. [4] presented

a method to identify common disease trajectories from electronic

health records and, based on that information, cluster similar trajec-

tories together. The core purpose is to find statistically significant

disease associations in patients. Jensen et al. [7] presented a net-

work representation of diseases to understand disease progression

and to predict the probable next stage in a patient’s life line.

The use of topological data analysis (TDA) in healthcare is rela-

tively new. Utilizing topological concepts to find shape and pattern

in data has made it an impactful tool to analyze health registry as

well. Nicolau et al. [16] used TDA to analyze breast cancer tran-

scriptional data. They identified a unique subgroup of patients with

100% survival rate. Li et al. [10] generated a patient-patient net-

work from electronic health records, where each patient is a node

and there is an edge between two nodes if they exhibit significant

similar behavior (e.g., similar lab tests etc.). The authors used topo-

logical analysis to build this network, and identified three subtypes

of Type 2 diabetes (T2D). They also analyzed disease comorbidities

associated with each T2D subtype.

The work presented in this paper complements the above efforts.

More specifically, we present a visual analytic framework that could

be used to analyze and interact with large patient trajectory data

sets acquired from hospitals. The results of applying our tool can

help reveal, in an unsupervised manner, hidden higher-order struc-

tures about how different subpopulations within a large population

show varied behavior, and how different factors possibly contribute

to the variant behavior. This new analytical capability can provide

valuable structural and behavioral insights into data that current

pipelines are ill-equipped to reveal, and in the process could help

us formulate better hypotheses from patient data.

3 APPROACH
In this section, we first present our approach for modeling the prob-

lem of analyzing hospital patient trajectories, identifying the dif-

ferent variables of interest, and the goals of analysis. Subsequently,

we present our visual analytics framework for this problem. We

present all our discussion viewing antimicrobial stewardship as

our target application, as this application is used as a case-study

throughout our study. However, the methodologies associated with

the problem modeling as well as our visual analytics framework

are both generalizable to other application contexts that involve

patient trajectories.

3.1 Problem Modeling and Formulation
The goal of our antimicrobial stewardship study is to identify po-

tential factors that contribute to antimicrobial exposure of patients

in hospitals. We consider only in-patient data, i.e., for patients who

are admitted and stay in the hospital for at least one day. The factors

we consider can be broadly categorized into three classes:

• Temporal: length of stay (LOS), which is the number of days

starting from the day of admission to the day of discharge

or mortality for a given patient;

• Spatial: the hospital where the patient is admitted, and the

hospital units where the patient receives care; and



• Treatment-based: agents and Standardized Antimicrobial Ad-

ministration Ratio (SAAR) groups that a patient is exposed

to over the course of their hospital stay.

The main performance (outcome) variable that we are interested

in is cumulative Days of Therapy (cDOT), which is defined as follows.
Days of Therapy (DOT) is the number of different agents a patient

receives on any given day of the admission. The cumulative DOT
(cDOT) on day i is the cumulative sum of DOT from day 1 through

day i . We also use the term Days Since Admission (DSA) to mean the

number of days since the admission date (including the admission

date). Note that when DSA equals LOS for a patient, the patient is

either discharged or deceased.

Figure 1: A scatterplot of patient trajectory data shown as a
distribution of cumulative Days-of-Therapy (cDOT) values
as a function of Day-Since-Admission (DSA). A single pa-
tient’s trajectory of points is represented as a series of dots
from DSA 1 to the last day of the patient’s admission.

In Figure 1, we show a simple scatterplot of patients’ trajectories

that we obtained from the DASON database (see Section 4 for more

details). It shows the distribution of cDOT values (performance,

on y-axis) as a function of DSA (time, on x-axis). This scatterplot,
while informative in its own to show the diversity of cDOT values,

could become easily overwhelming for decoding or identifying

any hidden patterns or substructures, particularly for large data

sets containing millions of patients. Nevertheless we show this

scatterplot to illustrate the simplistic view of data that it presents.

Hypothesis: We used the following two-part working hypoth-

esis to guide our study in understanding antimicrobial exposure

for inpatients:

• cDOT is responsive to a combination of temporal, spatial

and treatment-based factors, although to varying degrees;

and

• there can be significant variability across different (hidden)

segments of the patient population in the way cDOT is cor-

related to these factors.

In other words, a patient’s antimicrobial exposure is a combined

function of time (i.e., their respective length of stay (LOS)), and is

also potentially influenced by spatial attributes such as the units and

hospitals they receive treatment in. Furthermore, we hypothesize

that the type of antibiotic drug agents a patient receives in the

earlier stages of their stay could influence the type of agents they

receive in later stages of their stay.

Ideally, we would like to construct a robust mathematical model

(or models) to describe how the antimicrobial exposure is a function

of all the above factors. However, such a model construction is

likely to require a significant and complex effort; instead in this

paper, we focus on obtaining information from the data (of patient

trajectories) that is already available, in order to guide future model

construction efforts in a data-guided manner.

The second part of our hypothesis provides a way to contex-

tualize the level of influence, as we expect variability in cDOT

responses among different patient subgroups (or subpopulations).

These subpopulations are not necessarily known a priori (i.e., they

are hidden) and they need to be discovered as part of the analysis.

3.2 A Visual Analytics Framework
To test our working hypothesis, we implemented an unsupervised

approach that has its principles rooted in the mathematical field of

topological data analysis (TDA). Algebraic topology is the branch

of mathematics dealing with the shape and connectivity of spaces

[1, 14]. There are multiple important properties of topology that

make it particularly effective for extracting structural features from

large, high-dimensional data sets. First, topology studies shapes in

a coordinate-free way, which enables comparison among data sets

from diverse sources or coordinate systems. Second, topological

constructions are not sensitive to small changes in data, and robust

against noise. Third, topology works with compressed representa-
tions of spaces in the form of simplicial complexes (or triangulations)
[14], which preserve information relevant to how points are con-

nected. Compared to more traditional techniques such as principal

component analysis, multidimensional scaling, and cluster analysis,

topological methods are known to be more sensitive to both large

and small scale patterns [11].

Our approach is unsupervised in that no prior information or

models are assumed and that the approach makes its inferences

entirely based on the data. However, we wish to point out that the

inferences made by the TDA approach do not necessarily imply

causality. They should be viewed as identifying generalized corre-

lations between variables across the spectrum of a heterogeneous

population—there is increased variability in the degrees of the cor-

relations across the population. Such generalized correlations could

not be identified by direct application of traditional data analysis

techniques.

In this paper, we present an implementation for analyzing patient

trajectory data sets using the Hyppo-X framework [8, 9], which is

an implementation of the Mapper algorithm [17]. Hyppo-X is a com-

putational tool for modeling and exploring multidimensional data

where one set of (continuous) variables f = { f1, f2, . . . fk } can be

modeled as “filters” to study their impact on a target performance

(continuous) variable д. In the context of our application, each fi



variable can be any of our potentially influential variables (tempo-

ral, spatial, treatment-based), while the performance variable д is

chosen as cDOT. We now elaborate the use of Hyppo-X framework

in the context of our application.

Input: The input is a set of n points where each “point” is a unique

combination of [patient id, hospital id, admission id, DSA]. These

are the key fields that define a patient record (or a point) in our

analysis. In addition, each point also has a set of attributes including,

but not limited to, cDOT, NHSNunit-id, the agents that the patient

was administered on that DSA, etc. Figure 2a shows an example

input distribution of points (just for illustration purposes). Note

that a trajectory can be defined by following the trail of points for

a patient through the DSA interval [1, LOS]. As the LOS is different

for each patient, the different trajectories are expected to be of

varying lengths.

Output: Hyppo-X takes a set of input points as defined above and

outputs a compact visual representation of the points, grouped into

clusters that are connected via inter-cluster edges, that summarily

shows the evolution of points along the particular dimension (or

dimensions) chosen by the user.

Algorithm: Let X denote the set of points, and fz denote a partic-

ular dimension that we would like to use as a “filter” to view the

set of points. Intuitively, a filter can be thought of as a variable of

interest (e.g., DSA) that we would like to use as a “lens” through

which we would like to view the entire distribution of points.

Given X and a filter fz , the goal is to generate a graph-like rep-

resentation of clusters, where each node in the graph is a cluster of

points, and an edge exists between any two nodes if the correspond-

ing two clusters intersect in points. Here, a cluster is a subset of

points in X that show similar cDOT performance (i.e., have highly

similar cDOT values) under a certain interval of the filter variable

(e.g., DSA 5 through DSA 10).

Intuitively, each cluster represents a set of patient records that

show similar cDOT values observed around the same DSA interval;

and an edge exists between two nodes in our graph if the corre-

sponding two clusters share at least one patient record in common.

This representation allows us to track the progression of patient

records as their trajectories evolve in time and cDOT performance.

Here is a more elaborate explanation of how we compute the

clusters. We slide a sequence of fixed length overlapping windows

over the filter variable, from the minimum DSA (=1) to the maxi-

mum DSA (=maximum over all the LOS). For experiments we used

a window length of 5, and we allow adjacent windows to overlap

by one day (i.e., last day of window i overlaps with the first day of

window i + 1). Next, the set of points that fall into each window

is organized into a bin (one bin for each window). We then run

the density-based clustering algorithm DBSCAN [3] to cluster all

points in a bin by their cDOT values. This clustering step produces

a partitioning of points within each bin, i.e., no two clusters be-

longing to the same bin share any point in common. If a region is

sufficiently dense, we make a cluster as shown in Figure 2b. Fur-

thermore, because we allow the windows to overlap, we generate

trails of overlapping clusters as shown.

Subsequently, a graph is generated, where every cluster is rep-

resented as a node, and an edge is drawn between any two nodes

where the respective clusters share at least one point in common.

Note that by construction, an edge can exist only between clusters

(a) An example input distribution of points

(b) Dividing the input points into smaller overlapping bins and clus-
tering on each bucket

(c) Compact topological object. Clusters are shown colored based on
their originating interval over the input filter variable.

Figure 2: Generation of topological object from a point
cloud.

originating between two adjacent bins. We refer to the resulting

graph as a topological object (simplicial complex, to be precise) as

shown in Figure 2c. If three clusters share points, the object includes

the triangle connecting the corresponding three nodes. In this work,

we limit our attention to the vertices and edges in the topological

object, i.e., its graph. This graph is a compact representation of the

set of input points, and allows one to efficiently visualize a large

collection of patients.

3.2.1 Feature extraction: We can extract features as a structural

property of the topological object, which in turn help to generate



hypotheses. One such structural feature is a “flare” that represents

branching phenomenon in the topological object. We now describe

the structure of a flare; an algorithm for detection of flares was

presented in our previous work [9].

A flare is a combination of a stem, branching node, and branches.

A stem in a flare is a simple path that ends at a branching node. A

branching node is a node that has at least two outgoing edges. Finally,
a branch is a simple path that starts at a branching node and ends at

either another branching node or a terminal node (zero out-degree

node). For instance, in Figure 2c the nodes labeled [A,B,C,D] refer
to a stem. The node D is a branching node with two branches—one

covering the path with nodes labeled [D,E, F ,G,H ], and the other

covering the path with nodes labeled [D, I , J ,K]. The topological
object contains a single flare here.

Branching phenomena as captured by a flare help us understand

divergent behavior of two (or more) subpopulations covered by

the branches. The comparative analysis of two divergent subpop-

ulations could help us formulate and subsequently test plausible

hypotheses pertaining to distinct behavior of hidden subpopula-

tions of a larger population.

3.3 Software
We implemented the project in C++, PHP, and D3 (for visualization).

The library generates graph objects in the JSON format for analysis.

Our framework is publicly available and can be accessed as part of

the Hyppo-X open source software kit [8].

4 EXPERIMENTAL RESULTS
4.1 Data
We used the Duke Antimicrobial Stewardship Outreach Network

(DASON) database [2], which comprises of 25 community hospi-

tals with full inpatient data. DASON contains detailed electronic

medication administration records (eMAR) for antimicrobials, pa-

tient movement data (bed flow), demographics, and billing data. It

includes information for millions of admissions, but we excluded

the records for outpatients when preparing our final dataset. Also

for calculating DOT, we counted only the antibacterial agents. We

imposed some other constraints as well, e.g., removing null values,

narrowing the dataset in between a specific range of dates, and so

on. Table 1 provides a brief summary of the final data set that we

used in all our analysis.

4.2 Experimental Evaluation
We ran the Hyppo-X framework on our hospital data set using

Days Since Admission (DSA) as a single filter function with bin

size of 5 days. Figure 3 shows the static snapshot of the topological

object output by our framework
1
. The clusters appear left to right

in an increasing order of their mean DSA values. The label within

each cluster node shows the mean cDOT value for the inpatients

in the corresponding DSA interval. We can see that the branching

phenomena starts to appear around day 70–80. This observation

suggests that there is little divergence among the patients during

the early part of their stay in the hospitals. However, the cluster size

becomes smaller along the way, and branches with higher cDOT

1
Note that in the actual tool, all topological objects allow interactive visualization.

Table 1: Summary of the data set

Number of hospitals 25

Number of hospital unit-categories 9

Number of distinct patient-admission records 349, 610

Number of adult patients 334, 207

Number of male patients 148, 540

Number of female patients 201, 052

Average LOS per admission 7 days

Longest LOS 405 days

Number of antibacterials used 66

Most used antibacterial Vancomycin

Average DOT per admission 6

Number of agent ranks 4

Most used agent rank rank 3

values start to emerge for longer term patients. This structure is

expected because increasingly more patients are discharged with

time.

We now analyze the distribution of patient clusters at different

stages of their trajectories by showing each cluster as a pie-chart

within it, based on different patient record attributes. The attributes

we use to analyze (one at a time) include (but are not limited to):

distribution of hospital units within clusters (Section 4.2.1), antibi-

otic agent ranks used within clusters (Section 4.2.2), and hospital-

specific analysis (Section 4.2.3).

4.2.1 Analysis based on unit category for patient clusters. There are
42 hospital units in our data set. These units can be grouped into 9

categories. In Figure 4, the pie-charts show the distribution of the

hospital unit categories within each cluster.

We make the following observations based on Figure 4:

• The majority of the clusters are dominated by patients in

the adult medical/surgical ward (shown in red), followed by

adult critical care (shown in green). However, these patient

clusters correspond mostly to the low cDOT branches (see

corresponding clusters in Figure 3), suggesting a relatively

low use of antibiotics for these patient groups.

• The composition of clusters (by unit categories) start to

change in the later branches of the object (with DSA values of

100 or more). In fact, on one dominant set of branches around

DSA 100, we see a more even distribution among adult criti-

cal care, pediatric critical care, and Hematology/Oncology/

Transplant wards. These clusters also see a relative spike in

their cDOT values (see corresponding clusters in Figure 3).

• Another interesting observation is that there is a distinctive

set of cluster branches in around DSA 130 and above, that

also see an increase in their cDOT values. This set of cluster

branches is dominated with patients from the neonatal unit

(shown in light green). In addition, we see a divergence

in cDOT usage even among this small group of neonatal

unit patients—with some branches receiving a higher cDOT

values than the others.

Collectively, these observations suggest that antibiotic use does

not necessarily show a linear increase with time. Instead, different

patient groups receiving treatment in different units show spikes



Figure 3: The topological object constructed using Days Since Admission (DSA) as a single filter function and cumulative Days
On Therapy (cDOT) as the clustering attribute. The horizontal color bar indicates the gradient of DSA value from left (low)
to right (hight). The node coloring and the labels are both based on the mean cDOT value for that cluster. The node color
spectrum is from blue (low) to red (high). Each cluster is defined using an interval of 5 days. Hence the first cluster from
left represents the first five days of the patients admitted in the hospital, the second cluster represents 5th–10th days of the
patients’ stay, and so on.

Figure 4: The distribution of hospital unit categories shown as a pie-chart within each cluster.

in their antibiotic use at different intervals of their hospital stay.

Furthermore, not all units see a comparable use of antibiotics—for

instance, adult medical/surgical ward is frequently occurring but

receives lower antibiotics; whereas pediatric ward or some segment

of neonatal unit populations are rarer but receive higher antibiotics.

There are also units that are both rare and are exposed to lower an-

tibiotics (e.g., labor and delivery/post-partum/GYN). Finally, there

is also a cDOT divergence within the same unit category—in partic-

ular, patient groups in the neonatal ward.

4.2.2 Analysis based on agent rank on patient clusters. There are a
total of 66 antibacterial agents used on patients in the DASON data.

We can rank and group these agents into four groups—from rank

1 through rank 4—roughly in order of their type/target microbial

coverage. This ranking also reflects a rough ordering based on the

agent severity (with 1 being low to 4 being high).

Using this ranking scheme, we computed the distribution of

agent ranks used within each cluster. This distribution is as per

the agents used by the patients in a given cluster (within the DSA

range represented by that cluster). In addition, there were many

days when a patient did not receive any agent. To capture such

cases, we introduced a separate “No agent usage” rank category.

Figure 5 shows the distribution of agent ranks within each cluster.

We make the following observations based on this figure:

• The most dominant category is the “No agent usage” cate-

gory across the range of clusters. However, in the initial days

of stay (DSA range 1 through 60–70) this is not necessarily

true (i.e., other agent ranks are visible).



Figure 5: The pie chart in each node is representing the percentage usage of each agent group on that particular interval of
time.

• Among the agents used, rank 3 agents appear most frequent

(shown in blue), followed by rank 1 (shown in yellow), and

subsequently by rank 2 (shown in cyan).

• Rank 4 agents appear rarely (represented by red) but they

also generally appear in the branches with the higher cDOT

values. This observation probably suggests that use of this

agent is reserved typically for patients withworsening health

conditions.

Note here that the use or non-use of an antibiotic agent (rank)

could potentially be a matter of preference or practice protocol

across different hospitals. In the following section, we analyze their

impact across different hospitals.

Figure 6: Number of records per hospital. The Duke hospital
(id: 2000) has the largest number of records.

4.2.3 Rank based analysis on specific hospital. Patient data from a

total of 25 hospitals are represented in the DASON data set. How-

ever, the Duke medical hospital (hospital id: 2000) is the domi-

nant contributor accounting for almost 15% of the unique patient

records—as shown in Figure 6. To elucidate any potential differences

in antibiotic use across these different hospitals, we performed two

studies—one by considering records only from the Duke hospital

(id: 2000), and another by considering records only from the re-

maining 24 hospitals. The resulting objects are shown in Figure 7.

Even though the pie-charts in the clusters are shown by their agent

rank distributions, we also compare information that is contained

in the general structure of these two objects.

We make the following observations based on Figure 7:

• The sizes of the clusters stay roughly uniform over the first

100 days along the main stem of the topological object for

Duke hospital, whereas the sizes rapidly shrink for the other

hospitals in the same period. This suggests that the patients

tend to stay longer at the Duke hospital, whereas in the com-

munity hospitals, patients either leave because they recover

or they leave to get transferred to a larger hospital (such as

Duke).

• Patients in the Duke Hospital are more likely (than ones in

the other hospitals) to receive some antibiotic at least once

during their stay.

• The use of agent rank 4 is relatively more frequent at the

Duke hospital than for the other hospitals.

• Even though these two objects were constructed individ-

ually, the general topological structure (i.e., overall shape)

is roughly comparable, suggesting we have similar branch-

ing/divergence attributes between the two classes of hospi-

tals (Duke vs. non-Duke).

4.3 Interesting features/flares
So far, we have described observations on the topological object

without necessarily examining its branching structure in detail. In

order to more thoroughly examine the branching structure within

different parts of the object (i.e., different subpopulations), we ap-

plied our flare detection algorithm (Section 3.2.1) to the DASON

data. Recall that a flare is a structural features comprising of a stem

region that ends at a branching node, and is subsequently followed

by a number of child branches. For the purpose of our study, we

used the hospital id attribute of the dataset to identify the coverage

of a flare. The coverage of a flare specifies the boundary to which

we can extend a given flare. This is done in order to ensure that

we recover a meaningful branch which covers data points from the

same subpopulation.

Figure 8 shows the two most interesting flares detected by our

approach (shown in blue and red arcs). Note that our tool computes



(a) Rank based analysis on the data set only from Duke Hospital.

(b) Rank based analysis on the data set excluding Duke Hospital.

Figure 7: A comparison of rank based analysis on Duke (top) vs Non-Duke (bottom) Hospitals.

a score for each flare and outputs them in decreasing order. We

make the following observations based on the detected flares:

(1) From DSA 1 to DSA 80, there is little divergence in the cDOT

values of the patient clusters (with a few exceptions), and

this is shown by the long stem of the blue flare.

(2) This behavior changes around DSA 80. A group of patients

were treated with higher dose of antibiotics compared to the

remaining group (Figure 8(A)). The branching node (shown

with thick border) in the blue flare represents this branching

event. This branching event essentially serves to bifurcate

patients in the Hematology/Oncology/Transplant or the Pe-

diatric wards into two subgroups as shown in Figure 8(C)—

those for whom cDOT increased (higher branches) and those

for whom it did not, along the lower branches.

(3) The other flare (shown in red arcs), with a branching occur-

ring around DSA 100, shows a further split in the population

between the neonatal branches (lower) vs. non-neonatal

branches (higher).

(4) In terms of agent rank usage, we see that it is the subpop-

ulation corresponding to the first flare (blue) that is ex-

posed to agent rank 4 (see Figure 8(B)). This subpopulation

corresponds to patients mostly in either the Adult Medi-

cal/Surgical Ward or the Hematology/Oncology/Transplant

Ward (see Figure 8(C)).

In summary, our approach was able to identify in an unsuper-

vised manner the major branching events in the data. Further, the

analysis presented above shows which subgroups within the larger

patient population are more prevalent in those branches.

5 CONCLUSIONS
The use of topological data analysis for biomedical informatics

applications is relatively new. This technique has a potential to

represent complex data in compact and visually-friendly formats.

In this paper, we have presented a visual analytics framework pow-

ered by topological data analysis for analyzing patient trajectories,

and applied it to the concrete application of exploring patient tra-

jectories following the use of antibiotics in hospitals. First, the

framework allowed a clustering of patient trajectories (by their

antibiotic use, or cDOT) so that they can be concisely viewed along

the temporal dimension. Subsequently, we used multiple attributes

such as hospital units or agent ranks to analyze and observe patterns



Figure 8: Topological object constructed using DSA as a single filter function (shown earlier in Figure 3), now also showing the
interesting flares detected by our method. The nodes are arranged from left to right with chronological order of mean DSA
values. (A) Each cluster colored by its mean cDOT, with branches showing different degree of uses. (B) Each cluster (node) of
the topological object is rendered as a pie-chart showing the distribution of their five antibiotic classes. (C) Each cluster (node)
of the topological object is rendered as a pie-chart showing the distribution of their nine hospital unit classes. Long arcs of
different colors show interesting flares, and the corresponding branching nodes are identified with bold border. The blue flare
was ranked as the most interesting flare.

(both conserved and discrepant substructures) in these clustered

trajectories.

In contrast to traditional approaches using dense scatterplots

(as shown in Figure 1), our approach provides the new capabil-

ity to analyze and examine patient trajectories in a detailed and



visually interactive manner. Further, our analysis by different at-

tributes revealed a more nuanced picture of how antibiotics are

used across the patient population and across hospitals (and their

units). In summary, we not only find differing propensities for use

of antibiotics within certain hospital units, but we also find similar

propensities across hospitals. Furthermore, we observe divergence

within patient groups (e.g., neonatal) on how antibiotics are used.

These observations are directly inferred from the data in an unsu-

pervised manner, and could in turn inform future construction of

more robust models in this space.

Future research directions include (but are not limited to) the

following. In addition to the attributes used, we plan to explore

using other variables in our framework to study antibiotic use

in hospitals including patients’ Elixhauser score (which gives an

indication of comorbidities in a patient), disease diagnostic codes

(associated with each admission), and others. These variables could

collectively throwmore light into the context under which a patient

receives treatment in a hospital.

The observations made in this work also open new questions

about what makes a patient more susceptible toward antibiotic

exposure in hospitals, and about whether there is a way to build

predictive/probabilistic models based on training data obtained

from these trajectories. Also, more work is needed to understand

and better characterize the structural properties of the topological

objects created for different hospitals. In particular, comparing

and contrasting them can help us better understand similar and

discrepant practices across those healthcare locations and also help

us devise consistent and standardized procedures toward improving

antibiotic stewardship.
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