

The Maximum Distance Problem and Minimum Spanning Trees

Enrique Alvarado

Bala Krishnamoorthy, Kevin R. Vixie

Department of Mathematics and Statistics

January 6, 2021

Ξ

프 + - 프 + -

b 4

Under what conditions can a subset E of \mathbb{R}^n be covered by a rectifiable curve?

- In ℝ²: Jones, Peter (1990). "Rectifiable sets and the Traveling Salesman Problem". Inventiones Mathematicae. 102: 1–15.
- In ℝⁿ: Okikiolu, Kate (1992). "Characterization of subsets of rectifiable curves in Rn". Journal of the London Mathematical Society. 46 (2): 336–348.

Both papers used what are now called <u>Jones' beta numbers</u> and gave <u>quantitative</u> conditions on E such that it may be covered by a rectifiable curve.

Beta Numbers

Let $E \subset \mathbb{R}^2$ and let Q be a cube. The Beta number of E within the cube Q is given by

$$eta_E(Q) := \inf_L \sup_{y \in E \cap Q} rac{\operatorname{dist}_\infty(y,L)}{I(Q)}.$$

Consider the sum of $\beta_E(Q)$ over the family of dyadic cubes Δ :

$$\beta(E) := \operatorname{diam} E + \sum_{Q \in \Delta} \beta_E(Q)^2 I(Q).$$

The Analyst's Traveling Salesman Thm.

Washington State University

Theorem

There exists a number C such that if $\beta(E) < \infty$ then $E \subset \mathbb{R}^2$ can be covered by a rectifiable curve of length no more than $C\beta(E)$. Conversely, if E can be covered by a rectifiable curve Γ , then $\beta(E) < C\mathcal{H}^1(\Gamma)$.

Although, for example, a cube cannot be covered by a rectifiable curve, for any $\epsilon > 0$ there are many curves whose ϵ -neighborhoods $B(\Gamma, \epsilon)$ can cover E.

Let $E \subset \mathbb{R}^n$ be bounded and $\epsilon > 0$. Find the minimizers of

 $\lambda(E,\epsilon) := \inf \{ \mathcal{H}^1(\Gamma) : \Gamma \text{ is compact, connected and } B(\Gamma,\epsilon) \supset E \}.$

A Naive Heuristic

- **1** Cover *E* with some number of closed ϵ balls with centers *X*.
- 2 Find a Steiner tree S_X spanning X.

Main Question

How close is $\mathcal{H}^1(S_X)$ to $\lambda(E, \epsilon)$?

(ϵ, k) -minimal Steiner length

Washington State University

Let $E \subset \mathbb{R}^n$ be compact and $\epsilon > 0$, we define the (ϵ, k) -minimal Steiner length of E to be

$$\sigma_k(E,\delta) := \inf \{ \mathcal{H}^1(S_X) : X \in \mathcal{N}_k(E,\epsilon), \}$$

where $\mathcal{N}_k(E, \epsilon)$ is the family of all *k*-point sets whose ϵ -balls cover *E* and S_X is any Steiner tree over *X*.

Figure: $X_1 \in \mathcal{N}_4(E, \epsilon)$

Figure: $X_2 \in \mathcal{N}_4(E, \epsilon)$

《日》 《圖》 《臣》 《臣》

(ϵ, k) -minimal Steiner length

Washington State University

Figure: S_{X_1} for $X_1 \in \mathcal{N}_4(E, \epsilon)$.

Figure: (ϵ , 4)-minimal Steiner tree

(日) (문) (문) (문)

E

(ϵ, k) -minimal Steiner length

Washington State University

Figure: S_{X_1} for $X_1 \in \mathcal{N}_4(E, \epsilon)$.

Figure: (ϵ , 4)-minimal Steiner tree

(日) (문) (문) (문)

E

Washington State University

1
$$\sigma_k(E,\epsilon) \neq \lambda(E,\epsilon)$$
 for any $k \in \mathbb{N}$.

Ξ

Washington State University

1
$$\sigma_k(E,\epsilon) \neq \lambda(E,\epsilon)$$
 for any $k \in \mathbb{N}$.

Ξ

Washington State University

1
$$\sigma_k(E,\epsilon) \neq \lambda(E,\epsilon)$$
 for any $k \in \mathbb{N}$.

Ξ

Washington State University

1
$$\sigma_k(E,\epsilon) \neq \lambda(E,\epsilon)$$
 for any $k \in \mathbb{N}$.

Ξ

What if we allow an arbitrary number of points? i.e.

 $\sigma(E,\epsilon) := \inf \{ \mathcal{H}^1(S_X) : X \in \mathcal{N}(E,\epsilon) \quad \text{where} \quad \mathcal{N}(E,\epsilon) = \cup_{i=1}^{\infty} \mathcal{N}_k(E,\epsilon) \}$

Ξ

Figure: Partition L into N subintervals of length L/N.

Ξ

Figure: We must lift each circle up and down by $\delta := \delta(L, N, \epsilon)$.

Ξ

Figure: Construct a polygonal curve C_N of length $(N + 1)2\delta + L$ spanning points X_N whose ϵ balls cover E.

E

<ロト <回ト < 回ト < 回ト

Figure: Increase N and see that δ is smaller.

Ξ

We have that

$$L \leq \mathcal{H}^1(S_{X_N}) \leq \mathcal{H}^1(C_N) \\ = (N+1)2\delta + L.$$

• If we can show that $\mathcal{H}^1(C_N) \to L$ as $N \to 0$ we get

$$\sigma(E,\epsilon) = L = \lambda(E,\epsilon).$$

16

The Maximum Distance Problem and Minimum Spanning Trees

E

The Case of $E = B(L, \epsilon)$

Washington State University

$$\delta = \frac{\left(\frac{L}{2N}\right)^2}{\epsilon} = CN^{-2}$$

E

《口》 《圖》 《臣》 《臣》

We then have

$$\delta = \frac{\left(\frac{L}{2N}\right)^2}{\epsilon} = CN^{-2}$$

implying

$$\begin{aligned} \mathcal{H}^{1}(C_{N}) &= (N+1)2\delta + L \\ &= C \frac{(N+1)}{N^{2}} + L \\ &\to L \end{aligned} \quad \text{as } N \to \infty$$

:. For $E = B(L, \epsilon)$ we can instead minimize over Steiner trees which span points whose ϵ balls cover E.

.

E

Lemma 3.5 (A, Krishnamoorthy, Vixie; arXiv:2004.07323)

Let $\epsilon > 0$ and let $\Gamma \subset \mathbb{R}^2$ be a rectifiable curve. For any $\delta > 0$, there exists a finite point set $X = \{x_i\}_{i=1}^N$ and another rectifiable curve Γ_* containing X such that

$$B(X,\epsilon) \supset B(\Gamma,\epsilon)$$
 and $\mathcal{H}^1(\Gamma_*) \leq \mathcal{H}^1(\Gamma) + \delta.$

Theorem 3.7 (Miranda Jr., Paolini, Stepanov; Calc. Var. 27, 287–309 (2006)) Let $\Gamma \subset \mathbb{R}^2$ be a rectifiable curve and with $F_E(\Gamma) > 0$. Then for each $\delta > 0$ there exists a compact connected Γ_* such that

$$F_E(\Gamma_*) < F_E(\Gamma)$$
 and $\mathcal{H}^1(\Gamma_*) \leq \mathcal{H}^1(\Gamma) + \delta$.

Proof of Lemma.

- **1** Parameterize Γ with a Lipschitz map $\gamma : I \to \mathbb{R}^2$ s.t. $L(\gamma) \leq 2\mathcal{H}^1(\Gamma)$.
- 2 Partition the domain I s.t. a large fraction of I is made up of good pieces (G_i) and a small fraction of bad pieces (B_j) .
- 3 Cover the neighborhoods of the $\gamma(G_i)$ with endpoints of prongs (as in the case of a line segment) and cover the neighborhoods of $\gamma(B_j)$ with endpoints of spokes.

Proof of Theorem.

- 1 Work only in the image of γ .
- 2 Use Egorof's theorem to get uniform estimates on a Beta number to decompose Γ into a good pieces and a bad piece.
- 3 Construct vertical lines and small circles around good pieces and construct larger circles around the bad pieces.

The Maximum Distance Problem and Minimum Spanning Trees

• $\sigma_k(E, \epsilon)$ for fixed $k \in \mathbb{N}$ computationally and theoretically.

• Configuration spaces of $\mathcal{N}_k(E, \epsilon)$ and how they change as a function of k and ϵ .

• Minimal spanning trees over centers of random covers of *E*.

Thank You!

The Maximum Distance Problem and Minimum Spanning Trees

E