
Lattice-based Algorithms for
Number Partitioning in

the Hard Phase

Bala Krishnamoorthy
joint work with

William Webb and Nathan Moyer

Department of Mathematics, WSU

AMS Western Section Meeting, San Francisco

April 25, 2009

Number Partitioning Problem (NPP)

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ ,

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

• 4∗ = minimum discrepancy

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

• 4∗ = minimum discrepancy

• allocate β = 1/2 α, or, as close as possible to β, to each subset

Krishnamoorthy: Lattice Algos for NPP 1

Number Partitioning Problem (NPP)

Krishnamoorthy: Lattice Algos for NPP 2

Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

Krishnamoorthy: Lattice Algos for NPP 2

Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

• only one dealing directly with numbers

Krishnamoorthy: Lattice Algos for NPP 2

Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

• only one dealing directly with numbers

• balanced NPP (BalNPP): |S1| = |S2| = n/2 (for even n)

Krishnamoorthy: Lattice Algos for NPP 2

NPP – Example

• S = { 6, 4, 7, 8, 5 }

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14;

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15;

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15; 4 = 4∗ = 0

Krishnamoorthy: Lattice Algos for NPP 3

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15; 4 = 4∗ = 0

• 4∗ = 0 (or 4∗ = 1 when α odd) gives a perfect partition

Krishnamoorthy: Lattice Algos for NPP 3

Applications of NPP

Krishnamoorthy: Lattice Algos for NPP 4

Applications of NPP

• practical

• theoretical

Krishnamoorthy: Lattice Algos for NPP 4

Applications of NPP

• practical

– scheduling jobs on processors

(NPP into k ≥ 3 subsets: multiprocessor scheduling problem)

– VLSI circuit design

– public key cryptography

• theoretical

Krishnamoorthy: Lattice Algos for NPP 4

Applications of NPP

• practical

– scheduling jobs on processors

(NPP into k ≥ 3 subsets: multiprocessor scheduling problem)

– VLSI circuit design

– public key cryptography

• theoretical

– phase transition (fully characterized mathematically)

– NP-completeness of other problems involving numbers –

bin packing, knapsack etc.

Krishnamoorthy: Lattice Algos for NPP 4

NPP – known results

• aj = U [1, R] for R ∈ Z>0

Krishnamoorthy: Lattice Algos for NPP 5

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

Krishnamoorthy: Lattice Algos for NPP 5

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

Krishnamoorthy: Lattice Algos for NPP 5

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

– 4∗ = O(n 2−n R) for BalNPP

Krishnamoorthy: Lattice Algos for NPP 5

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

– 4∗ = O(n 2−n R) for BalNPP

∗ Karmarkar, Karp, Lueker, Odlyzko (88): median 4∗ for NPP

∗ Lueker (98): average 4∗ for NPP

∗ Mertens (98): median and average 4∗ for BalNPP

Krishnamoorthy: Lattice Algos for NPP 5

Phase transition of NPP and BalNPP

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

• # perfect partitions ↑ as R ↓ with R < 2n

Krishnamoorthy: Lattice Algos for NPP 6

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

• # perfect partitions ↑ as R ↓ with R < 2n

• minimum partition unique for R � 2n

Krishnamoorthy: Lattice Algos for NPP 6

Karmarkar-Karp differencing (KK)

Krishnamoorthy: Lattice Algos for NPP 7

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

Krishnamoorthy: Lattice Algos for NPP 7

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

Krishnamoorthy: Lattice Algos for NPP 7

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)

Krishnamoorthy: Lattice Algos for NPP 7

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)
recall, 4∗ = O(

√
n 2−n R)

Krishnamoorthy: Lattice Algos for NPP 7

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)
recall, 4∗ = O(

√
n 2−n R)

• running time is O(n log n)

Krishnamoorthy: Lattice Algos for NPP 7

Complete KK heuristic

Krishnamoorthy: Lattice Algos for NPP 8

Complete KK heuristic

• Korf (98), Mertens (99)

Krishnamoorthy: Lattice Algos for NPP 8

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

Krishnamoorthy: Lattice Algos for NPP 8

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

Krishnamoorthy: Lattice Algos for NPP 8

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

Krishnamoorthy: Lattice Algos for NPP 8

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

• # of branch-and-bound nodes is exponential in n when R > 2n

Krishnamoorthy: Lattice Algos for NPP 8

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

• # of branch-and-bound nodes is exponential in n when R > 2n

• converges very slowly

Krishnamoorthy: Lattice Algos for NPP 8

KK and CKK: Example

Krishnamoorthy: Lattice Algos for NPP 9

KK and CKK: Example

6, 5, 4,1

4, 1, 1

3, 1

2

8, 7, 6,5,4

Krishnamoorthy: Lattice Algos for NPP 9

KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

Krishnamoorthy: Lattice Algos for NPP 9

KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

• dashed parts of the tree are pruned

Krishnamoorthy: Lattice Algos for NPP 9

KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

• dashed parts of the tree are pruned

• two-color associated tree to recover partition

Krishnamoorthy: Lattice Algos for NPP 9

Algorithms for NPP

Krishnamoorthy: Lattice Algos for NPP 10

Algorithms for NPP

• KK is the best polynomial time approx. algo known

Krishnamoorthy: Lattice Algos for NPP 10

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

Krishnamoorthy: Lattice Algos for NPP 10

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

Krishnamoorthy: Lattice Algos for NPP 10

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

• lattice-based techniques? IP approaches?

Krishnamoorthy: Lattice Algos for NPP 10

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

• lattice-based techniques? IP approaches?

• typical numbers are huge; for n = 30, look at aj’s with 11 digits!

Krishnamoorthy: Lattice Algos for NPP 10

Lattice Problems and NPP

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

.

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

find x ∈ Zn s.t. ‖Bx−u‖≤ γ, or prove ‖Bx−u‖> γ ∀x ∈ Zn.

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

find x ∈ Zn s.t. ‖Bx−u‖≤ γ, or prove ‖Bx−u‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

find x ∈ Zn s.t. ‖Bx−u‖≤ γ, or prove ‖Bx−u‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists.

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

find x ∈ Zn s.t. ‖Bx−u‖≤ γ, or prove ‖Bx−u‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists. Here, β =
∑

j aj/2.

Krishnamoorthy: Lattice Algos for NPP 11

Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

find x ∈ Zn s.t. ‖Bx−u‖≤ γ, or prove ‖Bx−u‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists. Here, β =
∑

j aj/2.

• reduce DNPP to DCVP

Krishnamoorthy: Lattice Algos for NPP 11

DNPP to DCVP

Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

Krishnamoorthy: Lattice Algos for NPP 12

DNPP to DCVP

Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

B =
[
2d I

aT

]
,

Krishnamoorthy: Lattice Algos for NPP 12

DNPP to DCVP

Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, u =

[
d 1
β

]
.

Krishnamoorthy: Lattice Algos for NPP 12

DNPP to DCVP

Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, u =

[
d 1
β

]
.

• output of reduction: DCVP instance (B,u, d
√

n + 1)

Krishnamoorthy: Lattice Algos for NPP 12

DNPP to DCVP

Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, u =

[
d 1
β

]
.

• output of reduction: DCVP instance (B,u, d
√

n + 1)

• generalization of Micciancio (2001) reduction of subset sum to CVP

Krishnamoorthy: Lattice Algos for NPP 12

DBalNPP to DCVP

Krishnamoorthy: Lattice Algos for NPP 13

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d.

Krishnamoorthy: Lattice Algos for NPP 13

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Krishnamoorthy: Lattice Algos for NPP 13

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is Cook-reducible to DCVP for d > 0.

Krishnamoorthy: Lattice Algos for NPP 13

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is Cook-reducible to DCVP for d > 0.

B′ =

 2d I

(d + 1)1T

aT

 , u′ =

 d 1
(d + 1)bn/2c

β

 .

Krishnamoorthy: Lattice Algos for NPP 13

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is Cook-reducible to DCVP for d > 0.

B′ =

 2d I

(d + 1)1T

aT

 , u′ =

 d 1
(d + 1)bn/2c

β

 .

• output of reduction: DCVP instance (B′,u′, d
√

n + 1)

Krishnamoorthy: Lattice Algos for NPP 13

A lattice algorithm for NPP

Krishnamoorthy: Lattice Algos for NPP 14

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

Krishnamoorthy: Lattice Algos for NPP 14

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

Krishnamoorthy: Lattice Algos for NPP 14

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but,

Krishnamoorthy: Lattice Algos for NPP 14

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete!

Krishnamoorthy: Lattice Algos for NPP 14

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete! no such oracle exists for large n

Krishnamoorthy: Lattice Algos for NPP 14

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete! no such oracle exists for large n

• algo does not use estimates on expected 4∗

Krishnamoorthy: Lattice Algos for NPP 14

A Basis Reduction Heuristic for NPP

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 ,

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis whose

columns are “short” and “nearly orthogonal”

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis whose

columns are “short” and “nearly orthogonal”

• with 4∗ =
√

n 2−n R, try d = c4∗ for several c’s in [1/n, n]

Krishnamoorthy: Lattice Algos for NPP 15

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis whose

columns are “short” and “nearly orthogonal”

• with 4∗ =
√

n 2−n R, try d = c4∗ for several c’s in [1/n, n]

• Lagarias & Odlyzko (85), Coster et al. (92): for subset sums

Krishnamoorthy: Lattice Algos for NPP 15

BR Algo Tests:

Krishnamoorthy: Lattice Algos for NPP 16

BR Algo Tests: for NPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e

(s
ec

on
ds

)

Krishnamoorthy: Lattice Algos for NPP 16

BR Algo Tests: for NPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e

(s
ec

on
ds

)

• block Korkine-Zolotarev (BKZ) reduction

Krishnamoorthy: Lattice Algos for NPP 16

BR Algo Tests: for NPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e

(s
ec

on
ds

)

• block Korkine-Zolotarev (BKZ) reduction

• opt: 4∗ =
√

n 2−n R is plotted

• ckk: estimated 4CKK for same running time as BR

Krishnamoorthy: Lattice Algos for NPP 16

BR Algo Tests: for NPP and BalNPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e

(s
ec

on
ds

)

20 25 30 35 40 45 50 55 60
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

tim
e

(s
ec

on
ds

)

• block Korkine-Zolotarev (BKZ) reduction

• opt: 4∗ =
√

n 2−n R is plotted

• ckk: estimated 4CKK for same running time as BR

Krishnamoorthy: Lattice Algos for NPP 16

Mixed Integer Program (MIP) for NPP

Krishnamoorthy: Lattice Algos for NPP 17

Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Krishnamoorthy: Lattice Algos for NPP 17

Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Discrepancy 4 = 2w.

Krishnamoorthy: Lattice Algos for NPP 17

Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Discrepancy 4 = 2w.

MIP for NPP:

min 2w

s.t. w ≥
∑

aj xj − β

w ≥ −
∑

aj xj + β

xj ∈ {0, 1} j = 1, . . . , n.

Krishnamoorthy: Lattice Algos for NPP 17

Rangespace Reformulation (RSRef)

Krishnamoorthy: Lattice Algos for NPP 18

Rangespace Reformulation (RSRef)

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

Krishnamoorthy: Lattice Algos for NPP 18

Rangespace Reformulation (RSRef)

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

apply basis reduction on D =
[
A b

0 M

]
to obtain D̃ =

[
Ã b̃

0 M

]
,

Krishnamoorthy: Lattice Algos for NPP 18

Rangespace Reformulation (RSRef)

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

apply basis reduction on D =
[
A b

0 M

]
to obtain D̃ =

[
Ã b̃

0 M

]
,

• solve the rangespace reformulation using standard solver:

min{w | Ãy + Bw ≤ b̃, y ∈ Zn }

Krishnamoorthy: Lattice Algos for NPP 18

RSRef Tests:

Krishnamoorthy: Lattice Algos for NPP 19

RSRef Tests: on NPP

20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

Opt
KK
CKK

time

20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

tim
e

(s
ec

on
ds

)

Krishnamoorthy: Lattice Algos for NPP 19

RSRef Tests: on NPP

20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

Opt
KK
CKK

time

20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

tim
e

(s
ec

on
ds

)

• BKZ for BR, CPLEX 9.0 as MIP solver

Krishnamoorthy: Lattice Algos for NPP 19

RSRef Tests: on NPP and BalNPP

20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

Opt
KK
CKK

time

20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

tim
e

(s
ec

on
ds

)
20 25 30 35 40 45 50

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

n

Opt
KK
CKK

time

20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

tim
e

(s
ec

on
ds

)

• BKZ for BR, CPLEX 9.0 as MIP solver

Krishnamoorthy: Lattice Algos for NPP 19

Truncated NPP (TruncNPP)

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} },

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Theorem 3. Let x̄ be an optimal solution to the truncated NPP.

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Theorem 3. Let x̄ be an optimal solution to the truncated NPP.

4T =
∣∣∣∑ ajx̄j − β

∣∣∣
Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Theorem 3. Let x̄ be an optimal solution to the truncated NPP.

4T =
∣∣∣∑ ajx̄j − β

∣∣∣ ≤ 4∗ + (n/2) T, on average.

Krishnamoorthy: Lattice Algos for NPP 20

Truncated NPP: Results

Krishnamoorthy: Lattice Algos for NPP 21

Truncated NPP: Results

• solve truncated instances using RSRef (MIP)

Krishnamoorthy: Lattice Algos for NPP 21

Truncated NPP: Results

• solve truncated instances using RSRef (MIP)

20 25 30 35 40 45
10

10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

n

di
sc

re
pa

nc
y

(lo
g1

0
un

its
)

TR
Opt
KK
CKK

time

20 25 30 35 40 45
0

100

200

300

400

500

600

tim
e

(s
ec

on
ds

)

Krishnamoorthy: Lattice Algos for NPP 21

Remarks

Krishnamoorthy: Lattice Algos for NPP 22

Remarks

• BR, or even CKK, can be applied to TruncNPP

Krishnamoorthy: Lattice Algos for NPP 22

Remarks

• BR, or even CKK, can be applied to TruncNPP

• BR, RSRef, TruncNPP: can be applied to

Krishnamoorthy: Lattice Algos for NPP 22

Remarks

• BR, or even CKK, can be applied to TruncNPP

• BR, RSRef, TruncNPP: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

Krishnamoorthy: Lattice Algos for NPP 22

Remarks

• BR, or even CKK, can be applied to TruncNPP

• BR, RSRef, TruncNPP: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

Krishnamoorthy: Lattice Algos for NPP 22

Remarks

• BR, or even CKK, can be applied to TruncNPP

• BR, RSRef, TruncNPP: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

• running times increase with R

Krishnamoorthy: Lattice Algos for NPP 22

Remarks

• BR, or even CKK, can be applied to TruncNPP

• BR, RSRef, TruncNPP: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

• running times increase with R

• for n ≥ 100, KK may still be the best (current) option

Krishnamoorthy: Lattice Algos for NPP 22

Outline

• Number Partitioning Problem (NPP)

• Karmarkar-Karp differencing (KK)

• NPP and the Closest Vector Problem (CVP)

• A Basis Reduction Heuristic for NPP

• Mixed Integer Program (MIP) for NPP

• Truncated NPP

Krishnamoorthy: Lattice Algos for NPP 23

