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• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

• 4∗ = minimum discrepancy

• allocate β = 1/2 α, or, as close as possible to β, to each subset
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Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

• only one dealing directly with numbers

• balanced NPP (BalNPP): |S1| = |S2| = n/2 (for even n)
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NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15; 4 = 4∗ = 0

• 4∗ = 0 (or 4∗ = 1 when α odd) gives a perfect partition
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Applications of NPP

• practical

– scheduling jobs on processors

(NPP into k ≥ 3 subsets: multiprocessor scheduling problem)

– VLSI circuit design

– public key cryptography

• theoretical

– phase transition (fully characterized mathematically)

– NP-completeness of other problems involving numbers –

bin packing, knapsack etc.
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NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

– 4∗ = O( n 2−n R) for BalNPP

∗ Karmarkar, Karp, Lueker, Odlyzko (88): median 4∗ for NPP

∗ Lueker (98): average 4∗ for NPP

∗ Mertens (98): median and average 4∗ for BalNPP
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Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

• # perfect partitions ↑ as R ↓ with R < 2n

• minimum partition unique for R � 2n
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Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)
recall, 4∗ = O(

√
n 2−n R)

• running time is O(n log n)
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Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

• # of branch-and-bound nodes is exponential in n when R > 2n

• converges very slowly
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KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2 

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

• dashed parts of the tree are pruned

• two-color associated tree to recover partition
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Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

• lattice-based techniques? IP approaches?

• typical numbers are huge; for n = 30, look at aj’s with 11 digits!
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Lattice Problems and NPP

• lattice generated by b1, . . . , bn (LI vectors in Rm) is

L =
{∑

j bjxj : xj ∈ Z
}

. (b1, . . . , bn) – a basis for L

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector u, rational γ > 0,

find x ∈ Zn s.t. ‖Bx−u‖≤ γ, or prove ‖Bx−u‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists. Here, β =
∑

j aj/2.

• reduce DNPP to DCVP
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Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, u =

[
d 1
β

]
.

• output of reduction: DCVP instance (B,u, d
√

n + 1)
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DNPP to DCVP

Theorem 1. DNPPd is Cook-reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, u =

[
d 1
β

]
.

• output of reduction: DCVP instance (B,u, d
√

n + 1)

• generalization of Micciancio (2001) reduction of subset sum to CVP
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DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is Cook-reducible to DCVP for d > 0.

B′ =

 2d I

(d + 1)1T

aT

 , u′ =

 d 1
(d + 1)bn/2c

β

 .

Krishnamoorthy: Lattice Algos for NPP 13



DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is Cook-reducible to DCVP for d > 0.

B′ =

 2d I

(d + 1)1T

aT

 , u′ =

 d 1
(d + 1)bn/2c

β

 .

• output of reduction: DCVP instance (B′,u′, d
√

n + 1)
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A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete! no such oracle exists for large n

• algo does not use estimates on expected 4∗
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A Basis Reduction Heuristic for NPP

Krishnamoorthy: Lattice Algos for NPP 15



A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

Krishnamoorthy: Lattice Algos for NPP 15



A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 ,

Krishnamoorthy: Lattice Algos for NPP 15



A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

Krishnamoorthy: Lattice Algos for NPP 15



A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

Krishnamoorthy: Lattice Algos for NPP 15



A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis

Krishnamoorthy: Lattice Algos for NPP 15



A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis whose

columns are “short” and “nearly orthogonal”

Krishnamoorthy: Lattice Algos for NPP 15
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• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis whose

columns are “short” and “nearly orthogonal”

• with 4∗ =
√

n 2−n R, try d = c4∗ for several c’s in [1/n, n]
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A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using basis reduction (BR) on

D =
[
B u

0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• BR: using elementary column operations, produce a basis whose

columns are “short” and “nearly orthogonal”

• with 4∗ =
√

n 2−n R, try d = c4∗ for several c’s in [1/n, n]

• Lagarias & Odlyzko (85), Coster et al. (92): for subset sums
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BR Algo Tests: for NPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y 

(lo
g1

0 
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e 

(s
ec

on
ds

)

Krishnamoorthy: Lattice Algos for NPP 16



BR Algo Tests: for NPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y 

(lo
g1

0 
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e 

(s
ec

on
ds

)

• block Korkine-Zolotarev (BKZ) reduction

Krishnamoorthy: Lattice Algos for NPP 16



BR Algo Tests: for NPP

20 25 30 35 40 45 50 55 60
10

0

10
5

10
10

10
15

n

di
sc

re
pa

nc
y 

(lo
g1

0 
un

its
)

BR
Opt
KK
CKK

time

20 25 30 35 40 45 50 55 60
0

500

1000

1500

tim
e 

(s
ec

on
ds

)

• block Korkine-Zolotarev (BKZ) reduction

• opt: 4∗ =
√

n 2−n R is plotted

• ckk: estimated 4CKK for same running time as BR
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BR Algo Tests: for NPP and BalNPP
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• block Korkine-Zolotarev (BKZ) reduction

• opt: 4∗ =
√

n 2−n R is plotted

• ckk: estimated 4CKK for same running time as BR
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Krishnamoorthy: Lattice Algos for NPP 17
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• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.
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Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Discrepancy 4 = 2w.

MIP for NPP:

min 2w

s.t. w ≥
∑

aj xj − β

w ≥ −
∑

aj xj + β

xj ∈ {0, 1} j = 1, . . . , n.
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Rangespace Reformulation (RSRef)
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Rangespace Reformulation (RSRef)

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;
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Rangespace Reformulation (RSRef)

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

apply basis reduction on D =
[
A b

0 M

]
to obtain D̃ =

[
Ã b̃

0 M

]
,
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Rangespace Reformulation (RSRef)

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

apply basis reduction on D =
[
A b

0 M

]
to obtain D̃ =

[
Ã b̃

0 M

]
,

• solve the rangespace reformulation using standard solver:

min{w | Ãy + Bw ≤ b̃, y ∈ Zn }
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RSRef Tests: on NPP
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• BKZ for BR, CPLEX 9.0 as MIP solver

Krishnamoorthy: Lattice Algos for NPP 19



RSRef Tests: on NPP and BalNPP
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• BKZ for BR, CPLEX 9.0 as MIP solver
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Truncated NPP (TruncNPP)
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Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.
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Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Theorem 3. Let x̄ be an optimal solution to the truncated NPP.
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Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Theorem 3. Let x̄ be an optimal solution to the truncated NPP.

4T =
∣∣∣∑ ajx̄j − β
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Truncated NPP (TruncNPP)

• Given the problem min{ |
∑

ajxj − β|, xj ∈ {0, 1} }, solve

min{ |
∑

ājxj − β̄|, xj ∈ {0, 1} },

where āj = b aj/T e and β̄ = 1/2 ᾱ with ᾱ =
∑

āj.

• with T = 10t for t ≥ 1, we truncate the last t digits from each aj

Theorem 3. Let x̄ be an optimal solution to the truncated NPP.

4T =
∣∣∣∑ ajx̄j − β

∣∣∣ ≤ 4∗ + (n/2) T, on average.
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Truncated NPP: Results

• solve truncated instances using RSRef (MIP)
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Truncated NPP: Results

• solve truncated instances using RSRef (MIP)
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and/or cardinality constraints
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Remarks

• BR, or even CKK, can be applied to TruncNPP

• BR, RSRef, TruncNPP: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

• running times increase with R

• for n ≥ 100, KK may still be the best (current) option
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Outline

• Number Partitioning Problem (NPP)

• Karmarkar-Karp differencing (KK)

• NPP and the Closest Vector Problem (CVP)

• A Basis Reduction Heuristic for NPP

• Mixed Integer Program (MIP) for NPP

• Truncated NPP
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