

Lattice-based Algorithms for Number Partitioning in the Hard Phase

Bala Krishnamoorthy

joint work with

William Webb and Nathan Moyer Department of Mathematics, WSU

AMS Western Section Meeting, San Francisco

April 25, 2009

• Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,

- Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,
- divide S into 2 disjoint subsets $S_1 \cup S_2 = S$ such that

- Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,
- divide S into 2 disjoint subsets $S_1 \cup S_2 = S$ such that

$$\triangle = \left| \sum_{j \in S_1} a_j - \sum_{j \in S_2} a_j \right|,$$

- Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,
- divide S into 2 disjoint subsets $S_1 \cup S_2 = S$ such that

$$riangle = \left| \sum_{j \in S_1} a_j - \sum_{j \in S_2} a_j \right|, ext{ the discrepancy,}$$

- Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,
- divide S into 2 disjoint subsets $S_1 \cup S_2 = S$ such that

$$riangle = \left| \sum_{j \in S_1} a_j - \sum_{j \in S_2} a_j \right|, ext{ the discrepancy,}$$

is minimized.

- Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,
- divide S into 2 disjoint subsets $S_1 \cup S_2 = S$ such that

$$riangle = \left| \sum_{j \in S_1} a_j - \sum_{j \in S_2} a_j \right|, ext{ the discrepancy,}$$

is minimized.

• $\triangle^* = \text{minimum discrepancy}$

- Given $S = \{a_1, \ldots, a_n\}$ with $a_j \in \mathbb{Z}_{>0}$, $\alpha = \sum_j a_j$,
- divide S into 2 disjoint subsets $S_1 \cup S_2 = S$ such that

$$riangle = \left| \sum_{j \in S_1} a_j - \sum_{j \in S_2} a_j \right|, ext{ the discrepancy,}$$

is minimized.

- $\triangle^* = \text{minimum discrepancy}$
- allocate $\beta = 1/2 \ \alpha$, or, as close as possible to β , to each subset

• one of six basic NP-complete problems in Garey and Johnson (79)

- one of six basic NP-complete problems in Garey and Johnson (79)
- only one dealing directly with *numbers*

- one of six basic NP-complete problems in Garey and Johnson (79)
- only one dealing directly with *numbers*
- balanced NPP (BALNPP): $|S_1| = |S_2| = n/2$ (for even n)

• $S = \{ 6, 4, 7, 8, 5 \}$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$

$\mathbf{NPP} - \mathbf{Example}$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $-S_1 = \{4, 5, 7\}$ with subset sum = 16,

$\mathbf{NPP} - \mathbf{Example}$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $-S_1 = \{4, 5, 7\}$ with subset sum = 16,
 - $-S_2 = \{6, 8\}$ with subset sum = 14;

$\mathbf{NPP} - \mathbf{Example}$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $-S_1 = \{4, 5, 7\}$ with subset sum = 16,
 - $S_2 = \{6, 8\}$ with subset sum = 14; $\triangle = 2$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $-S_1 = \{4, 5, 7\}$ with subset sum = 16,
 - $S_2 = \{6, 8\}$ with subset sum = 14; $\triangle = 2$
- $S = \{4, 5, 6, 7, 8\}$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $S_1 = \{4, 5, 7\}$ with subset sum = 16, - $S_2 = \{6, 8\}$ with subset sum = 14; $\triangle = 2$
- $S = \{4, 5, 6, 7, 8\}$
 - $S_1 = \{4, 5, 6\}$ and $S_2 = \{7, 8\}$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $S_1 = \{4, 5, 7\}$ with subset sum = 16, - $S_2 = \{6, 8\}$ with subset sum = 14; $\triangle = 2$
- $S = \{4, 5, 6, 7, 8\}$
 - $-S_1 = \{4, 5, 6\}$ and $S_2 = \{7, 8\}$
 - both subset sums = 15;

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $S_1 = \{4, 5, 7\}$ with subset sum = 16, - $S_2 = \{6, 8\}$ with subset sum = 14; $\triangle = 2$
- $S = \{4, 5, 6, 7, 8\}$
 - $-S_1 = \{4, 5, 6\}$ and $S_2 = \{7, 8\}$
 - both subset sums = 15; $\triangle = \triangle^* = 0$

- $S = \{ 6, 4, 7, 8, 5 \}$
- $S = \{4, 5, 6, 7, 8\}$
 - $S_1 = \{4, 5, 7\}$ with subset sum = 16, - $S_2 = \{6, 8\}$ with subset sum = 14; $\triangle = 2$
- $S = \{4, 5, 6, 7, 8\}$
 - $S_1 = \{4, 5, 6\}$ and $S_2 = \{7, 8\}$
 - both subset sums = 15; $\triangle = \triangle^* = 0$
- $\triangle^* = 0$ (or $\triangle^* = 1$ when α odd) gives a *perfect* partition

• practical

• theoretical

• practical

- scheduling jobs on processors (NPP into $k \ge 3$ subsets: multiprocessor scheduling problem)
- VLSI circuit design
- public key cryptography
- theoretical

• practical

- scheduling jobs on processors (NPP into $k \ge 3$ subsets: multiprocessor scheduling problem)
- VLSI circuit design
- public key cryptography
- theoretical
 - phase transition (fully characterized mathematically)
 - NP-completeness of other problems involving numbers bin packing, knapsack etc.

• $a_j = U[1, R]$ for $R \in \mathbb{Z}_{>0}$

- $a_j = U[1, R]$ for $R \in \mathbb{Z}_{>0}$
- median and expected \triangle^* (in the limit)

- $a_j = U[1, R]$ for $R \in \mathbb{Z}_{>0}$
- median and expected \triangle^* (in the limit)
 - $\triangle^* = O(\sqrt{n} \, 2^{-n} \, R)$ for NPP

- $a_j = U[1, R]$ for $R \in \mathbb{Z}_{>0}$
- median and expected \triangle^* (in the limit)

$$- \bigtriangleup^* = O(\sqrt{n} \, 2^{-n} \, R)$$
 for NPP

 $- \bigtriangleup^* = O(n \ 2^{-n} R)$ for Balnpp

- $a_j = U[1, R]$ for $R \in \mathbb{Z}_{>0}$
- median and expected \triangle^* (in the limit)

$$- \bigtriangleup^* = O(\sqrt{n} \, 2^{-n} \, R)$$
 for NPP

 $- \bigtriangleup^* = O(n \ 2^{-n} R)$ for Balnpp

* Karmarkar, Karp, Lueker, Odlyzko (88): median \triangle^* for NPP

- * Lueker (98): average \triangle^* for NPP
- * Mertens (98): median and average \triangle^* for BALNPP

 $\bullet \ \mathrm{Prob}(\bigtriangleup^* = 0/1) \to 1 \ \text{ as } n \to \infty \ \mathrm{for} \ R < 2^n$

• $\mathsf{Prob}(\triangle^* = 0/1) \to 1$ as $n \to \infty$ for $R < 2^n$ (easy phase)

- $\mathsf{Prob}(\triangle^* = 0/1) \to 1$ as $n \to \infty$ for $R < 2^n$ (easy phase)
- $\bullet \ \mathrm{Prob}(\bigtriangleup^* = 0/1) \to 0 \ \text{ as } n \to \infty \ \mathrm{for} \ R > 2^n$

- $\mathsf{Prob}(\triangle^* = 0/1) \to 1$ as $n \to \infty$ for $R < 2^n$ (easy phase)
- $\mathsf{Prob}(\triangle^* = 0/1) \to 0$ as $n \to \infty$ for $R > 2^n$ (hard phase)

- $\mathsf{Prob}(\triangle^* = 0/1) \to 1$ as $n \to \infty$ for $R < 2^n$ (easy phase)
- $\mathsf{Prob}(\triangle^* = 0/1) \to 0$ as $n \to \infty$ for $R > 2^n$ (hard phase)
 - Gent and Walsh (96): empirical evidence
 - Mertens (98): spin glass analogy
 - Borgs, Chayes, and Pittel (01): complete mathematical analysis

- $\mathsf{Prob}(\triangle^* = 0/1) \to 1$ as $n \to \infty$ for $R < 2^n$ (easy phase)
- $\mathsf{Prob}(\triangle^* = 0/1) \to 0$ as $n \to \infty$ for $R > 2^n$ (hard phase)
 - Gent and Walsh (96): empirical evidence
 - Mertens (98): spin glass analogy
 - Borgs, Chayes, and Pittel (01):
 complete mathematical analysis
- # perfect partitions \uparrow as $R \downarrow$ with $R < 2^n$

- $\mathsf{Prob}(\triangle^* = 0/1) \to 1$ as $n \to \infty$ for $R < 2^n$ (easy phase)
- $\mathsf{Prob}(\triangle^* = 0/1) \to 0$ as $n \to \infty$ for $R > 2^n$ (hard phase)
 - Gent and Walsh (96): empirical evidence
 - Mertens (98): spin glass analogy
 - Borgs, Chayes, and Pittel (01):
 complete mathematical analysis
- # perfect partitions \uparrow as $R \,\downarrow\, {\rm with}\,\, R < 2^n$
- minimum partition unique for $R \gg 2^n$

• maintain sorted list of numbers

- maintain sorted list of numbers
- replace two largest numbers by their difference (commit to place them in opposite subsets)

- maintain sorted list of numbers
- replace two largest numbers by their difference (commit to place them in opposite subsets)
- Yakir (96): $\triangle_{KK} = O(n^{-0.72 \log n} R)$

- maintain sorted list of numbers
- replace two largest numbers by their difference (commit to place them in opposite subsets)
- Yakir (96): $\triangle_{KK} = O(n^{-0.72 \log n} R)$ recall, $\triangle^* = O(\sqrt{n} 2^{-n} R)$

- maintain sorted list of numbers
- replace two largest numbers by their difference (commit to place them in opposite subsets)
- Yakir (96): $\triangle_{KK} = O(n^{-0.72 \log n} R)$ recall, $\triangle^* = O(\sqrt{n} 2^{-n} R)$
- running time is $O(n \log n)$

• Korf (98), Mertens (99)

- Korf (98), Mertens (99)
- also consider replacing two largest numbers by their sum

- Korf (98), Mertens (99)
- also consider replacing two largest numbers by their sum
- improves on KK discrepancy as it continues to run

- Korf (98), Mertens (99)
- also consider replacing two largest numbers by their sum
- improves on KK discrepancy as it continues to run
- effective in practice in the easy phase

- Korf (98), Mertens (99)
- also consider replacing two largest numbers by their sum
- improves on KK discrepancy as it continues to run
- effective in practice in the easy phase
- # of branch-and-bound nodes is exponential in n when $R>2^n$

- Korf (98), Mertens (99)
- also consider replacing two largest numbers by their sum
- improves on KK discrepancy as it continues to run
- effective in practice in the easy phase
- # of branch-and-bound nodes is exponential in n when $R > 2^n$
- converges very slowly

• dashed parts of the tree are pruned

- dashed parts of the tree are pruned
- two-color associated tree to recover partition

$\ \ \, \textbf{Algorithms for } NPP \\$

$\ \ \, \textbf{Algorithms for } NPP \\$

• KK is the *best* polynomial time approx. algo known

- KK is the *best* polynomial time approx. algo known
- metaheuristics for easy phase (Storer (96))

- KK is the *best* polynomial time approx. algo known
- metaheuristics for easy phase (Storer (96))
- concentrate on "hard phase" $(R > 2^n)$

- KK is the *best* polynomial time approx. algo known
- metaheuristics for easy phase (Storer (96))
- concentrate on "hard phase" $(R > 2^n)$
- lattice-based techniques? IP approaches?

- KK is the *best* polynomial time approx. algo known
- metaheuristics for easy phase (Storer (96))
- concentrate on "hard phase" $(R > 2^n)$
- lattice-based techniques? IP approaches?
- typical numbers are *huge*; for n = 30, look at a_j 's with 11 digits!

• lattice generated by b_1, \ldots, b_n (LI vectors in \mathbb{R}^m) is

• lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$

• lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP):

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP):
 Given: lattice basis B ∈ Z^{m×n}, target vector u, rational γ > 0,

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP): Given: lattice basis $B \in \mathbb{Z}^{m \times n}$, target vector \boldsymbol{u} , rational $\gamma > 0$, find $\boldsymbol{x} \in \mathbb{Z}^n$ s.t. $\|B\boldsymbol{x} - \boldsymbol{u}\| \leq \gamma$, or prove $\|B\boldsymbol{x} - \boldsymbol{u}\| > \gamma \,\forall \, \boldsymbol{x} \in \mathbb{Z}^n$.

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP): Given: lattice basis $B \in \mathbb{Z}^{m \times n}$, target vector \boldsymbol{u} , rational $\gamma > 0$, find $\boldsymbol{x} \in \mathbb{Z}^n$ s.t. $\|B\boldsymbol{x} - \boldsymbol{u}\| \leq \gamma$, or prove $\|B\boldsymbol{x} - \boldsymbol{u}\| > \gamma \,\forall \, \boldsymbol{x} \in \mathbb{Z}^n$.
- Decision version of NPP (DNPP_d): Given numbers a_1, \ldots, a_n and an even number 2d, decide if a partition exists with $\Delta \leq 2d$.

Lattice Problems and NPP

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP): Given: lattice basis $B \in \mathbb{Z}^{m \times n}$, target vector \boldsymbol{u} , rational $\gamma > 0$, find $\boldsymbol{x} \in \mathbb{Z}^n$ s.t. $\|B\boldsymbol{x} - \boldsymbol{u}\| \le \gamma$, or prove $\|B\boldsymbol{x} - \boldsymbol{u}\| > \gamma \forall \boldsymbol{x} \in \mathbb{Z}^n$.
- Decision version of NPP (DNPP_d): Given numbers a_1, \ldots, a_n and an even number 2d, decide if a partition exists with $\Delta \leq 2d$. Equivalently, find $\boldsymbol{x} \in \{0,1\}^n$ s.t. $\sum_j a_j x_j = \beta - \delta$ for some $\delta \leq d$, if it exists.

Lattice Problems and NPP

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP): Given: lattice basis $B \in \mathbb{Z}^{m \times n}$, target vector \boldsymbol{u} , rational $\gamma > 0$, find $\boldsymbol{x} \in \mathbb{Z}^n$ s.t. $\|B\boldsymbol{x} - \boldsymbol{u}\| \leq \gamma$, or prove $\|B\boldsymbol{x} - \boldsymbol{u}\| > \gamma \forall \boldsymbol{x} \in \mathbb{Z}^n$.
- Decision version of NPP (DNPP_d): Given numbers a_1, \ldots, a_n and an even number 2d, decide if a partition exists with $\Delta \leq 2d$. Equivalently, find $x \in \{0,1\}^n$ s.t. $\sum_j a_j x_j = \beta - \delta$ for some $\delta \leq d$, if it exists. Here, $\beta = \sum_j a_j/2$.

Lattice Problems and NPP

- lattice generated by $\boldsymbol{b_1}, \dots, \boldsymbol{b_n}$ (LI vectors in \mathbb{R}^m) is $\mathbb{L} = \left\{ \sum_j \boldsymbol{b_j} x_j : x_j \in \mathbb{Z} \right\}.$ $(\boldsymbol{b_1}, \dots, \boldsymbol{b_n})$ – a basis for \mathbb{L}
- Closest Vector Problem (decision version DCVP): Given: lattice basis $B \in \mathbb{Z}^{m \times n}$, target vector \boldsymbol{u} , rational $\gamma > 0$, find $\boldsymbol{x} \in \mathbb{Z}^n$ s.t. $\|B\boldsymbol{x} - \boldsymbol{u}\| \le \gamma$, or prove $\|B\boldsymbol{x} - \boldsymbol{u}\| > \gamma \forall \boldsymbol{x} \in \mathbb{Z}^n$.
- Decision version of NPP (DNPP_d): Given numbers a_1, \ldots, a_n and an even number 2d, decide if a partition exists with $\Delta \leq 2d$. Equivalently, find $x \in \{0,1\}^n$ s.t. $\sum_j a_j x_j = \beta - \delta$ for some $\delta \leq d$, if it exists. Here, $\beta = \sum_j a_j/2$.
- \bullet reduce DNPP to DCVP

$$B = \begin{bmatrix} 2d \ I \\ \boldsymbol{a}^T \end{bmatrix},$$

$$B = \begin{bmatrix} 2d \ I \\ a^T \end{bmatrix}, \quad oldsymbol{u} = \begin{bmatrix} d \ oldsymbol{1} \\ eta \end{bmatrix}.$$

Theorem 1. DNPP_d is Cook-reducible to DCVP for d > 0.

$$B = \begin{bmatrix} 2d \ I \\ a^T \end{bmatrix}, \quad \boldsymbol{u} = \begin{bmatrix} d \ 1 \\ \beta \end{bmatrix}.$$

• output of reduction: DCVP instance $(B, u, d\sqrt{n+1})$

$$B = \begin{bmatrix} 2d \ I \\ a^T \end{bmatrix}, \quad \boldsymbol{u} = \begin{bmatrix} d \ 1 \\ \beta \end{bmatrix}.$$

- output of reduction: DCVP instance $(B, u, d\sqrt{n+1})$
- generalization of Micciancio (2001) reduction of subset sum to CVP

$\mathrm{DBALNPP} \ to \ \mathrm{DCVP}$

• DBALNPP_d: Given a_1, \ldots, a_n and an even number 2d > 0, decide if a balanced partition exists with $\Delta \leq 2d$.

• DBALNPP_d: Given a_1, \ldots, a_n and an even number 2d > 0, decide if a balanced partition exists with $\Delta \leq 2d$. Equivalently, find $\boldsymbol{x} \in \{0,1\}^n$ with $\sum_j x_j = \lfloor n/2 \rfloor$ s.t. $\sum_j a_j x_j = \beta - \delta$ or $\sum_j a_j x_j = \beta + \delta$, for some $\delta \leq d$, if it exists.

DBALNPP_d: Given a₁,..., a_n and an even number 2d > 0, decide if a balanced partition exists with Δ ≤ 2d. Equivalently, find x ∈ {0,1}ⁿ with Σ_jx_j = ⌊n/2⌋ s.t. Σ_ja_jx_j = β - δ or Σ_ja_jx_j = β + δ, for some δ ≤ d, if it exists.

DBALNPP_d: Given a₁,..., a_n and an even number 2d > 0, decide if a balanced partition exists with Δ ≤ 2d. Equivalently, find x ∈ {0,1}ⁿ with Σ_jx_j = ⌊n/2⌋ s.t. Σ_ja_jx_j = β - δ or Σ_ja_jx_j = β + δ, for some δ ≤ d, if it exists.

$$B' = \begin{bmatrix} 2d \ I \\ (d+1)\mathbf{1}^T \\ \mathbf{a}^T \end{bmatrix}, \quad \mathbf{u'} = \begin{bmatrix} d \ \mathbf{1} \\ (d+1)\lfloor n/2 \rfloor \\ \beta \end{bmatrix}.$$

DBALNPP_d: Given a₁,..., a_n and an even number 2d > 0, decide if a balanced partition exists with Δ ≤ 2d. Equivalently, find x ∈ {0,1}ⁿ with Σ_jx_j = ⌊n/2⌋ s.t. Σ_ja_jx_j = β - δ or Σ_ja_jx_j = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBALNPP_d is Cook-reducible to DCVP for d > 0.

$$B' = \begin{bmatrix} 2d \ I \\ (d+1)\mathbf{1}^T \\ \mathbf{a}^T \end{bmatrix}, \quad \mathbf{u'} = \begin{bmatrix} d \ \mathbf{1} \\ (d+1)\lfloor n/2 \rfloor \\ \beta \end{bmatrix}.$$

• output of reduction: DCVP instance $(B', \mathbf{u'}, d\sqrt{n+1})$

• Given a DCVP oracle, do a binary search on $[0,\beta]$ for \bigtriangleup^*

- Given a DCVP oracle, do a binary search on $[0,\beta]$ for \bigtriangleup^*
- NPP is solved using a polynomial # calls to the oracle

- Given a DCVP oracle, do a binary search on $[0,\beta]$ for \bigtriangleup^*
- NPP is solved using a polynomial # calls to the oracle
- but,

- Given a DCVP *oracle*, do a binary search on $[0, \beta]$ for \triangle^*
- NPP is solved using a polynomial # calls to the oracle
- **but**, DCVP is NP-complete!

- Given a DCVP *oracle*, do a binary search on $[0, \beta]$ for \triangle^*
- NPP is solved using a polynomial # calls to the oracle
- but, DCVP is NP-complete! no such oracle exists for large n

- Given a DCVP *oracle*, do a binary search on $[0, \beta]$ for \triangle^*
- NPP is solved using a polynomial # calls to the oracle
- but, DCVP is NP-complete! no such oracle exists for large n
- ullet algo does not use estimates on expected \bigtriangleup^*

• (try to) solve DCVP using *basis reduction* (BR) on

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix},$$

 \bullet (try to) solve DCVP using basis reduction (BR) on

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix}$$

where M is a large number.

 \bullet (try to) solve DCVP using basis reduction (BR) on

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix}, \text{ where }$$

where M is a large number.

• $DCVP \rightarrow shortest vector problem (SVP); Kannan (87)$

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix}, \text{ where } M \text{ is a large number.}$$

- $DCVP \rightarrow shortest vector problem (SVP); Kannan (87)$
- BR: using elementary column operations, produce a basis

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix}, \text{ where } M \text{ is a large number.}$$

- $DCVP \rightarrow shortest vector problem (SVP); Kannan (87)$
- BR: using elementary column operations, produce a basis whose columns are "short" and "nearly orthogonal"

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix}, \text{ where } M \text{ is a large number.}$$

- $DCVP \rightarrow shortest vector problem (SVP)$; Kannan (87)
- BR: using elementary column operations, produce a basis whose columns are "short" and "nearly orthogonal"
- with $\triangle^* = \sqrt{n} \, 2^{-n} R$, try $d = c \triangle^*$ for several c's in [1/n, n]

$$D = \begin{bmatrix} B & \mathbf{u} \\ \mathbf{0} & M \end{bmatrix} = \begin{bmatrix} 2d \ I & d\mathbf{1} \\ \mathbf{a}^T & \beta \\ \mathbf{0} & M \end{bmatrix}, \text{ where } M \text{ is a large number.}$$

- $DCVP \rightarrow shortest vector problem (SVP)$; Kannan (87)
- BR: using elementary column operations, produce a basis whose columns are "short" and "nearly orthogonal"
- with $\triangle^* = \sqrt{n} \, 2^{-n} \, R$, try $d = c \triangle^*$ for several c's in [1/n, n]
- Lagarias & Odlyzko (85), Coster et al. (92): for subset sums

BR Algo Tests:

BR Algo Tests: for NPP

BR Algo Tests: for NPP

• block Korkine-Zolotarev (BKZ) reduction

BR Algo Tests: for NPP

- block Korkine-Zolotarev (BKZ) reduction
- opt: $\triangle^* = \sqrt{n} \, 2^{-n} \, R$ is plotted
- ckk: estimated $riangle_{CKK}$ for same running time as BR

BR Algo Tests: for NPP and BALNPP

- block Korkine-Zolotarev (BKZ) reduction
- opt: $\triangle^* = \sqrt{n} \, 2^{-n} \, R$ is plotted
- ckk: estimated $riangle_{CKK}$ for same running time as BR

Mixed Integer Program (MIP) for NPP

Mixed Integer Program (MIP) for NPP

• let $x_j = 1$ if a_j is put in first subset, and 0 otherwise; and w = deviation from perfect division for first subset.

Mixed Integer Program (MIP) for NPP

 let x_j = 1 if a_j is put in first subset, and 0 otherwise; and w = deviation from perfect division for first subset.
Discrepancy △ = 2w.

Mixed Integer Program (MIP) for NPP

- let $x_j = 1$ if a_j is put in first subset, and 0 otherwise; and w = deviation from perfect division for first subset. Discrepancy $\triangle = 2w$.
 - MIP for NPP:

$$\begin{array}{lll} \min & 2w \\ \text{s.t.} & w & \geq & \sum a_j x_j - \beta \\ & w & \geq & -\sum a_j x_j + \beta \\ & x_j & \in & \{0,1\} & j = 1, \dots, n. \end{array}$$

• write NPP MIP as $\min\{w \mid Ax + Bw \leq b, x \in \mathbb{Z}^n\}$ with

$$A = \begin{bmatrix} \boldsymbol{a}^T \\ -\boldsymbol{a}^T \\ -I \\ I \end{bmatrix}, B = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } b = \begin{bmatrix} \beta \\ -\beta \\ 0 \\ 1 \end{bmatrix};$$

• write NPP MIP as $\min\{w \mid Ax + Bw \leq b, x \in \mathbb{Z}^n\}$ with

$$A = \begin{bmatrix} \boldsymbol{a}^T \\ -\boldsymbol{a}^T \\ -I \\ I \end{bmatrix}, B = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } b = \begin{bmatrix} \beta \\ -\beta \\ 0 \\ 1 \end{bmatrix};$$

apply basis reduction on $D = \begin{bmatrix} A & b \\ 0 & M \end{bmatrix}$ to obtain $\tilde{D} = \begin{bmatrix} \tilde{A} & \tilde{b} \\ 0 & M \end{bmatrix}$,

• write NPP MIP as $\min\{w \mid Ax + Bw \leq b, x \in \mathbb{Z}^n\}$ with

$$A = \begin{bmatrix} \boldsymbol{a}^T \\ -\boldsymbol{a}^T \\ -I \\ I \end{bmatrix}, B = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \text{ and } b = \begin{bmatrix} \beta \\ -\beta \\ 0 \\ 1 \end{bmatrix};$$

apply basis reduction on
$$D = \begin{bmatrix} A & b \\ 0 & M \end{bmatrix}$$
 to obtain $\tilde{D} = \begin{bmatrix} \tilde{A} & \tilde{b} \\ 0 & M \end{bmatrix}$,

• solve the *rangespace reformulation* using standard solver:

$$\min\{ w \mid \tilde{A}y + Bw \le \tilde{b}, \ y \in \mathbb{Z}^n \}$$

RSRef Tests:

RSRef Tests: on NPP

RSRef Tests: on NPP

• BKZ for BR, CPLEX 9.0 as MIP solver

RSRef Tests: on NPP and BALNPP

• BKZ for BR, CPLEX 9.0 as MIP solver

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0, 1\}\},\$

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0, 1\}\}$, solve

 $\min\{ |\sum \bar{a}_j x_j - \bar{\beta}|, x_j \in \{0, 1\} \},\$

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0,1\}\}$, solve

$$\min\{ |\sum \bar{a}_j x_j - \bar{\beta}|, x_j \in \{0, 1\} \},\$$

where $\bar{a}_j = \lfloor a_j/T \rceil$ and $\bar{\beta} = 1/2 \ \bar{\alpha}$ with $\bar{\alpha} = \sum \bar{a}_j$.

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0, 1\}\}$, solve

$$\min\{ |\sum \bar{a}_j x_j - \bar{\beta}|, x_j \in \{0, 1\} \},\$$

where $\bar{a}_j = \lfloor a_j/T \rceil$ and $\bar{\beta} = 1/2 \ \bar{\alpha}$ with $\bar{\alpha} = \sum \bar{a}_j$.

• with $T = 10^t$ for $t \ge 1$, we *truncate* the last t digits from each a_j

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0, 1\}\}$, solve

$$\min\{ |\sum \bar{a}_j x_j - \bar{\beta}|, x_j \in \{0, 1\} \},\$$

where $\bar{a}_j = \lfloor a_j/T \rfloor$ and $\bar{\beta} = 1/2 \ \bar{\alpha}$ with $\bar{\alpha} = \sum \bar{a}_j$.

• with $T = 10^t$ for $t \ge 1$, we *truncate* the last t digits from each a_j

Theorem 3. Let \bar{x} be an optimal solution to the truncated NPP.

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0, 1\}\}$, solve

$$\min\{ |\sum \bar{a}_j x_j - \bar{\beta}|, x_j \in \{0, 1\} \},\$$

where $\bar{a}_j = \lfloor a_j/T \rfloor$ and $\bar{\beta} = 1/2 \ \bar{\alpha}$ with $\bar{\alpha} = \sum \bar{a}_j$.

• with $T = 10^t$ for $t \ge 1$, we *truncate* the last t digits from each a_j

Theorem 3. Let \bar{x} be an optimal solution to the truncated NPP.

$$\Delta_T = \left| \sum a_j \bar{x}_j - \beta \right|$$

• Given the problem $\min\{|\sum a_j x_j - \beta|, x_j \in \{0, 1\}\}$, solve

$$\min\{ |\sum \bar{a}_j x_j - \bar{\beta}|, x_j \in \{0, 1\} \},\$$

where $\bar{a}_j = \lfloor a_j/T \rceil$ and $\bar{\beta} = 1/2 \ \bar{\alpha}$ with $\bar{\alpha} = \sum \bar{a}_j$.

• with $T = 10^t$ for $t \ge 1$, we *truncate* the last t digits from each a_j

Theorem 3. Let \bar{x} be an optimal solution to the truncated NPP.

$$\Delta_T = \left| \sum a_j \bar{x}_j - \beta \right| \leq \Delta^* + (n/2) T$$
, on average.

Truncated NPP: **Results**

Truncated NPP: Results

• solve truncated instances using RSRef (MIP)

Truncated NPP: **Results**

• solve truncated instances using RSRef (MIP)

 \bullet BR, or even CKK, can be applied to $\mathrm{TruncNPP}$

- \bullet BR, or even CKK, can be applied to $\mathrm{TruncNPP}$
- \bullet BR, RSRef, $\mathrm{TRUNCNPP}:$ can be applied to

- \bullet BR, or even CKK, can be applied to $\mathrm{TRUNCNPP}$
- BR, RSRef, TRUNCNPP: can be applied to
 - unequal partitions (e.g., $\beta = 0.3\alpha$)
 - constrained partitions $(\sum_j x_j = r \neq n/2)$
 - NPP with $k \ge 3$ subsets, with unequal shares ($\ne 1/k$), and/or cardinality constraints

- \bullet BR, or even CKK, can be applied to $\mathrm{TruncNPP}$
- BR, RSRef, TRUNCNPP: can be applied to
 - unequal partitions (e.g., $\beta = 0.3\alpha$)
 - constrained partitions $(\sum_j x_j = r \neq n/2)$
 - NPP with $k \ge 3$ subsets, with unequal shares $(\ne 1/k)$, and/or cardinality constraints
- lattice algos efficient in practice for reasonably large n

- \bullet BR, or even CKK, can be applied to $\mathrm{TruncNPP}$
- BR, RSRef, TRUNCNPP: can be applied to
 - unequal partitions (e.g., $\beta = 0.3\alpha$)
 - constrained partitions $(\sum_j x_j = r \neq n/2)$
 - NPP with $k \ge 3$ subsets, with unequal shares $(\ne 1/k)$, and/or cardinality constraints
- lattice algos efficient in practice for reasonably large \boldsymbol{n}
- running times increase with R

- \bullet BR, or even CKK, can be applied to $\mathrm{TruncNPP}$
- BR, RSRef, TRUNCNPP: can be applied to
 - unequal partitions (e.g., $\beta = 0.3\alpha$)
 - constrained partitions $(\sum_j x_j = r \neq n/2)$
 - NPP with $k \ge 3$ subsets, with unequal shares $(\ne 1/k)$, and/or cardinality constraints
- lattice algos efficient in practice for reasonably large \boldsymbol{n}
- \bullet running times increase with R
- for $n \ge 100$, KK may still be the best (current) option

Outline

- Number Partitioning Problem (NPP)
- Karmarkar-Karp differencing (KK)
- NPP and the Closest Vector Problem (CVP)
- \bullet A Basis Reduction Heuristic for NPP
- Mixed Integer Program (MIP) for NPP
- Truncated NPP