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Basis Reduction (BR) and Discrete
Optimization
e Lenstra (1983) - poly-time algo for integer programming (IP) in
fixed dimensions (also, Kannan (1985))

— BR is one of the key steps
— not implemented in practice

e more straightforward application of BR to IP

— column basis reduction (joint work with Pataki (UNC))
— simple; works in practice
— theory for class of knapsack problems,

and for general IPs (Pataki et al., 2010)

e lattice-based approaches to number partitioning in hard phase (joint
work with Bill Webb, Nathan Moyer (WSU))
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Integer Programming (IP)

o |P feasibility

Given
P = {x|£< Ax<b},

Find x € PN Z"™, or prove that no such x exists.
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Branching for IP feasibility

Given polyhedron P, integral vector c,

e width(c, P) = max{c'x|xe€ P} —min{clx|xe P} =~v-0.
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Given polyhedron P, integral vector c,
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e branching on c!x means creating the branches c!x = [§], ¢!x =

0] +1, ..., cx=|v| (add constraint to LP relaxation).
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Branching for IP feasibility

Given polyhedron P, integral vector c,

e width(c, P) = max{c'x|xe€ P} —min{clx|xe P} =~v-0.

e branching on c!x means creating the branches c!x = [§], ¢!x =

0] +1, ..., cx=|v| (add constraint to LP relaxation).
e no branches created = P has no integral point
e when ¢ = e;, we are branching on single variable z;

e different choices of ¢ produce very different effects on branching
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Column-BR in rangespace (CBR-R)
P = {x|£< Ax<Db}

~

P = {y[£<(AU)y < bj

where U i1s unimodular
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Column-BR in rangespace (CBR-R)
P = {x|£< Ax<Db}

~

P = {y|£<(AU)y < b}
where U is unimodular

e There is 1-1 correspondence between P NZ™ and P N Z" given by

Uy = x

e choose U s.t. columns of AU are reduced
e applies same even if some of the “<" are "="

e a ‘primal’ method
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Column-BR in nullspace (CBR-N)

o Let Aix = b; is a subset of the inequalities in £ < Ax <b
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Column-BR in nullspace (CBR-N)

o Let Aix = b; is a subset of the inequalities in £ < Ax <b
e reformulation using Hermite Normal Form (HNF) computation
{XEZ”‘AlX:bl} —= {Xd—FBl)\‘)\EZn_m}

with [B1,x4] typically not reduced
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o Let Aix = b; is a subset of the inequalities in £ < Ax <b
e reformulation using Hermite Normal Form (HNF) computation
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Column-BR in nullspace (CBR-N)

o Let Aix = b; is a subset of the inequalities in £ < Ax <b
e reformulation using Hermite Normal Form (HNF) computation
{xeZ"|Aix=b1} = {xg+BA|Ae€Z" ™}
with | By, x4| typically not reduced
e substitute Bi\ + x4 for x, then do CBR-R

e a "dual’ method
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CBR-N v/s CBR-R

e numerical output of CBR-N is similar to the reformulation technique
of Aardal, Hurkens, and Lenstra (1998) — going from n vars, m
equations to n — m vars, no equations
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CBR-N v/s CBR-R

e numerical output of CBR-N is similar to the reformulation technique
of Aardal, Hurkens, and Lenstra (1998) — going from n vars, m
equations to n — m vars, no equations

e CBR-R stays in same space; computed in a simpler way

e add slacks to “<", then apply AHL-reformulation?
Was not tried. Going to nullspace has some benefits (esp. in
cryptography applications)

e both CBR-R and CBR-N actually work for essentially all hard IPs
used to test “non-traditional” IP algorithms
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t + 1-level decomposable knapsack problems

® a:p1M1—|—p2M2—|—---—|—ptMt+r, with M1 > M2 > e > Mt
and for suitable 3,0

(KP) f<ax <f(+9, O0<x<u, xeZzZ"
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t + 1-level decomposable knapsack problems

® a:p1M1+p2M2—|—---—|—ptMt+r, with M1 > M2 > e > Mt
and for suitable 3,0

(KP) f<ax <f(+9, O0<x<u, xeZzZ"

e with suitably chosen data, the problem is “both hard and easy”

o ift =1, we just write p =p1, M = M,
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DKP instances for t =1

e a classic example: Jeroslow's problem

2014+ +x,) = n
$ZE{O,1}R

where n 1s odd.
e with B&B branching on the x;, no node is pruned above level n /2

e if we branch on 1 +--- + z,,, we solve it at the root node

e herep=1r=0 M =2
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Other known instances for t = 1

ep=1,r=(2°...,2" Y, u=1, M =21 : Todd's problem
from Chvatal "Hard knapsack problems” (1980)

ep=1,r=(1,...,n),u=1, M =n(n+1) : Avis' problem from
same paper

e Gu, Nemhauser, Savelsbergh (2001) - modification of Todd’s
problem

e Cornuéjols, Urbaniak, Weismantel, Wolsey (1996): p > 0, u =
+00 (inequality)

e Aardal-Lenstra (2004, 2006) : same as CUWW, but equality
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Other known instances for t = 1

ep=1,r=(2°...,2" Y, u=1, M =21 : Todd's problem
from Chvatal "Hard knapsack problems” (1980)

ep=1,r=(1,...,n),u=1, M =n(n+1) : Avis' problem from
same paper

e Gu, Nemhauser, Savelsbergh (2001) - modification of Todd’s
problem

e Cornuéjols, Urbaniak, Weismantel, Wolsey (1996): p > 0, u =
+00 (inequality)
e Aardal-Lenstra (2004, 2006) : same as CUWW, but equality

All, except the last two take > 2/2 nodes for ordinary B&B.
In last, d a large rhs for which the problem is infeasible
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Recipe for DKPs and hardness

e Krishnamoorthy and Pataki (2009): unifying “recipe” to generate
DKPs with t =1
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Recipe for DKPs and hardness

e Krishnamoorthy and Pataki (2009): unifying “recipe” to generate
DKPs with t =1

e Input: p,r,u.

Output: M, 3,0 s.t. the infeasibility of (KP) is proven by branching
on p'x.

10
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Recipe for DKPs and hardness

e Krishnamoorthy and Pataki (2009): unifying “recipe” to generate
DKPs with t =1

e Input: p,r,u.
Output: M, 3,0 s.t. the infeasibility of (KP) is proven by branching

on p'x.

e lower bound on the number of nodes necessary for ordinary B&B
(using x,'s)
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DKPs get harder as ¢ grows

two infeasible knapsack problems: can you tell which one is harder?

147321 + 152422 + 156923 + 157024 + 157525 + 162436 + 162527
+2160zg + 220629 + 2207z10 + 2211211 + 2211x19 + 2257213
+2260214 4+ 230515 + 2843216 + 2943217 + 2947215 + 2991219
+2993z50 4+ 2997391 + 3528222 + 3577223 + 3631T2y + 3677225

— 28980, z; € {0, 1}.

13142, + 131520 + 131723 + 131824 + 1971z5 + 1972136 + 197327
+197625 + 19779 + 1977210 + 2629211 + 2630212 + 2631213
+2631214 4 2633315 + 2634216 + 2635217 + 2635715 + 3287719
+3287290 + 328721 + 3289722 + 3292793 + 3293724 + 3293725

— 28981, z; € {0,1}.

Lattices and Integer Optimization
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Similar looking DKPs

e The second one has t = 1, and takes =~ 22,000 nodes to prove
infeasibility.

e The first one has t = 2, and takes = 3.6 million nodes to prove
infeasibility. (Note that 22° &~ 33 million).
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DKPs get more interesting as ¢ grows

o if () = LP relaxation of t = 2 DKP, then width(e;, Q) =1 —0V:
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only contains one integer. So “branching” on p;x means adding
p1x = k to the LP for some £
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DKPs get more interesting as ¢ grows

o if () = LP relaxation of t = 2 DKP, then width(e;, Q) =1 —0V:

e width(py,@) > 1, but [max{p;x:x € @} — min{p1x : x € Q}]
only contains one integer. So “branching” on p;x means adding
p1x = k to the LP for some £

e afterwards, branching on psx proves infeasibility

e [hese DKPs are called cascade problems. For n = 40 they become
unsolvable as IPs for commercial solvers

e a2 'not thin” direction beats a thin direction!
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Easiness of DKPs

e they are easy, if branching on pix, pix, ...

T

» Pt X
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e they are easy, if branching on pix, pix, ..., plx.

e if we fix p/x, the problem simplifies (p;M; disappears)
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Easiness of DKPs

e they are easy, if branching on pix, pix, ..., plx.

e if we fix p/x, the problem simplifies (p;M; disappears)

e width in direction of psy1x, after we branched on pix,...

O(rhs N ) )
M32+1 M8+1 |

, PsX IS

Lattices and Integer Optimization
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CBR’s action on DKPs

e Briefly: the “good reasons’ for p;x are transferred to the variable
Yn—i in the reformulation

Lattices and Integer Optimization 15



Example of CBR of a DKP

106 < 21x1 4+ 1929 < 113
-

T1,To € 0,6] N Z

X2 A

Hard for branching on x;s. Easy for branching on =1 + x9: max =

5.94, min = 5.04.

Lattices and Integer Optimization
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After Reformulation ...

Y2

... branching on ys proves infeasibility!

Lattices and Integer Optimization
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CBR’s Action on DKP

e we compute U so that

¢
<Zz’1 pI@MZ T r) U is reduced.
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CBR’s Action on DKP

e we compute U so that

(Zfl p;:M;+r

I

) U s reduced.

e Theorem: If separation between M; > My > --- > M, is suitably

large, then

/P1\

™y

[0 0...
0 0...

\(:) 0...

o O

o O
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CBR’s Action on DKP

e we compute U so that

(Zfl p;M; +r

I

) U s reduced.

e Theorem: If separation between M; > My > --- > M, is suitably

large, then

/P1\

™y

When computing U, we do not know the decomposition!

[0 0...
0 0...

\(:) 0...

o O

o O

>l<>l<)

Lattices and Integer Optimization
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CBR’s Action on DKP

e using the correspondence Uy = x, we get

pix = p1(Uy) = (PU)y = (P1U)n¥yn.

e Corollary:

— Branching on y,, in reformulation < branching on p1x in original
problem

— Afterwards: y,,—1 < p2X, etc.

— Analogous result for CBR-N

Lattices and Integer Optimization 19



Summary of CBR

e general reformulation technique for arbitrary IPs.

e has two variants: CBR-R and CBR-N, both work in practice and
can be analyzed

e a fairly general class of IPs provably hard for ordinary B&B

e the provably hard problems turn into provably easy ones: the
reformulation “uncovers’ the hidden, dominant directions

e The cascade problems: thinner # better!
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Summary of CBR

e general reformulation technique for arbitrary IPs.

e has two variants: CBR-R and CBR-N, both work in practice and
can be analyzed

e a fairly general class of IPs provably hard for ordinary B&B

e the provably hard problems turn into provably easy ones: the
reformulation “uncovers’ the hidden, dominant directions

e The cascade problems: thinner # better!

e Pataki et al. (2010) - B&B solves “almost all” instances of CBR-R
of {X ‘ El S Ax S Ui, «62 S X S 112} at root node if Aij -
U{1l,..., M} for sufficiently large M
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Number Partitioning Problem (NPP)

e Given S = {0,1, - .7CLn} with a; € Liso, 00 = Zj aj,
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Number Partitioning Problem (NPP)

e Given S = {a,l, - .7CLn} with a; € Liso, 00 = Zj aj,

e divide S into 2 disjoint subsets S; U S9 = S such that

Lattices and Integer Optimization

21



Number Partitioning Problem (NPP)

e Given S = {a,l, . ,CLn} with a; € Liso, 00 = Zj aj,

e divide S into 2 disjoint subsets S; U S9 = S such that

ANE= Z&j — ZCLJ',

1E€S57 71E€S9
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Number Partitioning Problem (NPP)

o Given S ={ay,..

.y an} with aj € Zso, a =3 aj,

e divide S into 2 disjoint subsets S; U S9 = S such that

N =

2% = )

, the discrepancy,
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e Given S = {a,l, . ,CLn} with a; € Liso, 00 = Zj aj,

e divide S into 2 disjoint subsets S; U S9 = S such that

AN\ = Z a; — Z a;j|, the discrepancy,

1E€S57 71E€S9

IS minimized.
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Number Partitioning Problem (NPP)

e Given S = {a,l, . ,CLn} with a; € Liso, 00 = Zj aj,

e divide S into 2 disjoint subsets S; U S9 = S such that

AN\ = Z a; — Z a;j|, the discrepancy,

1E€S57 71E€S9

IS minimized.

e A\* = minimum discrepancy
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Number Partitioning Problem (NPP)

o Given S ={ay,..

.y an} with aj € Zso, a =3 aj,

e divide S into 2 disjoint subsets S; U S9 = S such that

AN—

IS minimized.

2% = )

1E€S57 71E€S9

e A\* = minimum discrepancy

, the discrepancy,

e allocate 5 =1/2 «, or, as close as possible to 3, to each subset

Lattices and Integer Optimization
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Number Partitioning Problem (NPP)
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Number Partitioning Problem (NPP)

e one of six basic NP-complete problems in Garey and Johnson (79)
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e only one dealing directly with numbers
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Number Partitioning Problem (NPP)

e one of six basic NP-complete problems in Garey and Johnson (79)

e only one dealing directly with numbers

e balanced NPP (BALNPP): |S1| = |S2| = n/2 (for even n)
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e 5=1{6,4,7,8,5)}

NPP — Example
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NPP — Example

e 5=1{6,4,7,8,5)}

e S=1{4,5,6,7,8}

— 51 =1{4,5,7} with subset sum = 16,
— Sy = {6, 8} with subset sum = 14;
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e 5=1{6,4,7,8,5)}

e S=1{4,5,6,7,8}

— 51 =1{4,5,7} with subset sum = 16,
— Sy = {6,8} with subset sum = 14; A =2
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NPP — Example

e 5=1{6,4,7,8,5)}

e S=1{4,56,7,8)

— 51 =1{4,5,7} with subset sum = 16,
— Sy = {6,8} with subset sum = 14; A =2

e S=1{4,56,7,8)

Lattices and Integer Optimization

23



NPP — Example

e 5=1{6,4,7,8,5)}

e S=1{456,78

— 51 =1{4,5,7} with subset sum = 16,

— Sy = {6,8} with subset sum = 14; A =2
o S=1{4,56,7,8)

— Sy = {4,5,6} and Sy = {7,8)
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NPP — Example

e 5=1{6,4,7,8,5)}

e S=1{456,78

— 51 =1{4,5,7} with subset sum = 16,

— Sy = {6,8} with subset sum = 14; A =2
o S=1{4,56,7,8)

- 51 =1{4,5,6} and S; ={7,8}
— both subset sums = 15
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NPP — Example

e 5=1{6,4,7,8,5)}

e S=1{456,78

— 51 =1{4,5,7} with subset sum = 16,

— Sy = {6,8} with subset sum = 14; A =2
o S=1{4,56,7,8)

- 51 =1{4,5,6} and S; ={7,8}
— both subset sums =15;: A =A*=0
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NPP — Example

o 5=1{6,4,7,85}

o S=1{4,567,8)

— 51 =1{4,5,7} with subset sum = 16,

— Sy = {6,8} with subset sum = 14; A =2
o S=1{4,56,78)

— Sy ={4,5,6Y and S, = {7,8)

— both subset sums =15; A =A*=0

o N* =0 (or A* =1 when « odd) gives a perfect partition

Lattices and Integer Optimization
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Applications of NPP
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e practical

e theoretical

Applications of NPP
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Applications of NPP

e practical

— scheduling jobs on processors

(NPP into k > 3 subsets: multiprocessor scheduling problem)
— VLSI circuit design
— public key cryptography

e theoretical
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Applications of NPP

e practical

— scheduling jobs on processors

(NPP into k > 3 subsets: multiprocessor scheduling problem)
— VLSI circuit design
— public key cryptography

e theoretical

— phase transition (fully characterized mathematically)
— NP-completeness of other problems involving numbers —
bin packing, knapsack etc.

Lattices and Integer Optimization
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NPP — known results

e a; =U|l,R] for R € Z~0
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NPP — known results

e a; =U|l,R] for R € Z~0

e median and expected A* (in the limit)

— A* = O(/n2"" R) for NPP
- AN*=0( n2 " R) for BALNPP
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NPP — known results

e a; =U|l,R] for R € Z~0

e median and expected A* (in the limit)

- A* = O0(y/n2 " R) for NPP
— A*=0( n 2 "R) for BALNPP

+ Karmarkar, Karp, Lueker, Odlyzko (88): median A* for NPP
* Lueker (98): average A* for NPP
* Mertens (98): median and average A* for BALNPP
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Phase transition of NPP and BALNPP
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Phase transition of NPP and BALNPP

e Prob(A*=0/1) -1 asn — oo for R < 2"
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Phase transition of NPP and BALNPP

e Prob(A*=0/1) -1 asn — oo for R < 2™ (easy phase)

e Prob(A*=0/1) - 0 asn — oo for R > 2™ (hard phase)

— Gent and Walsh (96): empirical evidence
— Mertens (98): spin glass analogy
— Borgs, Chayes, and Pittel (01):

complete mathematical analysis

e 7+ perfect partitions T as R | with R < 2"

e minimum partition unique for R > 2"
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Karmarkar-Karp differencing (KK)

e maintain sorted list of numbers

e replace two largest numbers by their difference
(commit to place them in opposite subsets)

e Yakir (96): Axx = O(n=0-72loen )
recall, A* = O(y/n2 " R)

e running time is O(n logn)
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e Korf (98), Mertens (99)
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Complete KK heuristic

e Korf (98), Mertens (99)

e also consider replacing two largest numbers by their sum

e improves on KK discrepancy as it continues to run

e effective in practice in the easy phase

e # of branch-and-bound nodes is exponential in n when R > 2"

e converges very slowly
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KK and CKK: Example

8,7,654

/

6,5, 4,1

/

4, 1,

1

4
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KK and CKK: Example

8,7, 6,54
W 15, 6, 5,4
41,1 11,4, 1 1 9,5,4
/ \
/ \
/ ; \ / \
3,1 is1h 71 151 [a4| 1440 64
\ "I"r‘ N “r-v- ) l-_I__\_'I Ty
\ 1 \ 1 \ 1 \ \ 1 \ 1
\ 1 \ 1 \ 1 \ \ 1 \ 1
S S P o). L S
2 t4 p4ri6 i6 8 14 ilen JO] 8 i100 118 113
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8,7, 6,54
W 15, 6, 5,4
41,1 11,4, 1 1 9,5,4
/ \
/ \
/ ; \ / \
3,1 is1h 71 151 [a4| 1440 64
\ "I"r‘ N “r-v- ) l-_I__\_'I Ty
\ 1 \ 1 \ 1 \ \ 1 \ 1
\ 1 \ 1 \ 1 \ \ 1 \ 1
S S P o). L S
2 t4 p4ri6 i6 8 14 ilen JO] 8 i100 118 113

e dashed parts of the tree are pruned
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KK and CKK: Example

8,7, 6,54
W 15, 6, 5,4
41,1 11,41 9,5,4 | 21,5,4 1
“r--ov - r--\y -
/ \ \
/ \ / \
/ / \ / \ / \
31 is10 0 71 15,10 [a4] 1440 lledr 264
\ “r-r _I__\_I “r-v- l__I__\_'I Ty _T_TI
\ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
\ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
\ / \ I__, l_ _I_ \ / \ / _\_., _I__, -l..
2 14 r4ri6 i6r 8 il4 ler JOf i 8 i100 118 13 i21 122 :30

e dashed parts of the tree are pruned

e two-color associated tree to recover partition
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Algorithms for NPP

e KK is the best polynomial time approx. algo known
e metaheuristics for easy phase (Storer (96))

e concentrate on “hard phase” (R > 2")

e |attice-based techniques?

e typical numbers are huge; for n = 30, look at a;'s with 11 digits!
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e Closest Vector Problem (decision version - DCVP):
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Given: lattice basis B € Z™*"™, target vector t, rational v > 0,
find x € Z™ s.t. || Bx —t||<~, or prove | Bx —t||>yVx € Z".

e Decision version of NPP (DNPP,): Given numbers a4, ..., a, and
an even number 2d, decide if a partition exists with A < 2d.
Equivalently, find x € {0,1}" s.t. } . a;z; = 5 —4 for some ¢ < d,
if it exists.
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Lattice Problems and NPP

e Closest Vector Problem (decision version - DCVP):
Given: lattice basis B € Z™*"™, target vector t, rational v > 0,
find x € Z™ s.t. || Bx —t||<~, or prove | Bx —t||>yVx € Z".

e Decision version of NPP (DNPP,): Given numbers a4, ..., a, and
an even number 2d, decide if a partition exists with A < 2d.
Equivalently, find x € {0,1}" s.t. } . a;z; = 5 —4 for some ¢ < d,
if it exists. Here, 8 =) a;/2.

e reduce DNPP to DCVP
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DNPP to DCVP

Theorem 1. DNPPy is reducible to DCVP ford > 0.
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Theorem 1. DNPPy is reducible to DCVP ford > 0.

2d I
5= ]
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Theorem 1. DNPPy is reducible to DCVP ford > 0.
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DNPP to DCVP

Theorem 1. DNPPy is reducible to DCVP ford > 0.
2d 1 dl
a=[ar] = [5)

e output of reduction: DCVP instance (B,t,dvn + 1)
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DNPP to DCVP

Theorem 1. DNPPy is reducible to DCVP ford > 0.
2d 1 dl
a=[ar] = [5)

e output of reduction: DCVP instance (B,t,dvn + 1)

e generalization of Micciancio (2001) reduction of subset sum to CVP
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DBALNPP to DCVP

e DBALNPP,;: Given ai,...,a, and an even number 2d > 0,
decide if a balanced partition exists with A < 2d.
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DBALNPP to DCVP

e DBALNPP,;: Given ai,...,a, and an even number 2d > 0,
decide if a balanced partition exists with A < 2d. Equivalently,
find x € {0,1}" with > .x; = [n/2] st. )  ajx; = [ — 0 or
D axj = [+ 0, for some o < d, if it exists.

Theorem 2. DBALNPP, is reducible to DCVP for d > 0.

33
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DBALNPP to DCVP

e DBALNPP,;: Given ai,...,a, and an even number 2d > 0,
decide if a balanced partition exists with A < 2d. Equivalently,
find x € {0,1}" with > .x; = [n/2] st. )  ajx; = [ — 0 or
D axj = [+ 0, for some o < d, if it exists.

Theorem 2. DBALNPP, is reducible to DCVP for d > 0.

2d I d1
B' = |d+D1t|, t'=|(d+1)|n/2]
al 15}
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DBALNPP to DCVP

e DBALNPP,;: Given ai,...,a, and an even number 2d > 0,
decide if a balanced partition exists with A < 2d. Equivalently,

find x € {0,1}" with > .x; = [n/2] st. )  ajx; = [ — 0 or
D axj = [+ 0, for some o < d, if it exists.

Theorem 2. DBALNPP, is reducible to DCVP for d > 0.

2d I d1
B' = |d+D1t|, t'=|(d+1)|n/2]
L aT - L /8 -

e output of reduction: DCVP instance (B’,t',dv/n + 1)
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A lattice algorithm for NPP

e Given a DCVP oracle, do a binary search on |0, 3] for A*
e NPP is solved using a polynomial # calls to the oracle
e but, DCVP is NP-complete! no such oracle exists for large n

e algo does not use estimates on expected A*
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A Basis Reduction Heuristic for NPP

e (try to) solve DCVP using BR on
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e (try to) solve DCVP using BR on

9dT dl

=[5 4]+ %)
0O M
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A Basis Reduction Heuristic for NPP

e (try to) solve DCVP using BR on

B t
p=[o u

]:

9dT d1
al'
0 M

Y

where M is a large number.
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where M is a large number.

e DCVP — shortest vector problem (SVP); Kannan (87)
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A Basis Reduction Heuristic for NPP

e (try to) solve DCVP using BR on

B t
p=[o u

]:

9dT dl

al'
0 M

, where M is a large number.

e DCVP — shortest vector problem (SVP); Kannan (87)

o with A* =/n27" R, try d = c/A\* for several ¢'s in [1/n,n]

Lattices and Integer Optimization

35



A Basis Reduction Heuristic for NPP

e (try to) solve DCVP using BR on

9dT dl
0 M

D = [B t] = | al’ B |, where M is a large number.

0O M

e DCVP — shortest vector problem (SVP); Kannan (87)
o with A* =/n27" R, try d = c/A\* for several ¢'s in [1/n,n]

e Lagarias & Odlyzko (85), Coster et al. (92): for subset sums
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BR Algo Tests:
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BR Algo Tests: for NPP

1500
10"} | ==@=KK
= @ = CKK
=@= BR
10"} 1200
e Opt
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)
g 900 .
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S 10 8
> [}
2 @
© [}
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g 10 600
z
10*
300

20 25 30 35 40 45 50 55 60
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BR Algo Tests: for NPP

51 500

1014 [

10"+ 1200
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3 4900
@ 3
(=)
S 10’ - g
g 3
g ki)
2 :
[ be =
g 10 -4 1600
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e block Korkine-Zolotarev (BKZ) reduction
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51 500

1200

1900 .

1600

discrepancy (log scale)

e block Korkine-Zolotarev (BKZ) reduction
e opt: A* =,/n27"™ R is plotted

o ckk: estimated Ag g for same running time as BR
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BR Algo Tests: for NPP and BALNPP

51 500

1014 [

10"+ 1200
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1900
10° |

10° | 1600
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discrepancy (log scale)
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PSS LL o

10*

10°

e block Korkine-Zolotarev (BKZ) reduction
e opt: A* =,/n27"™ R is plotted

o ckk: estimated Ag g for same running time as BR
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Mixed Integer Program (MIP) for NPP
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Mixed Integer Program (MIP) for NPP

o let z; =1 if a; is put in first subset, and 0 otherwise; and
w = deviation from perfect division for first subset.
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o let z; =1 if a; is put in first subset, and 0 otherwise; and
w = deviation from perfect division for first subset.
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Mixed Integer Program (MIP) for NPP

o let z; =1 if a; is put in first subset, and 0 otherwise; and
w = deviation from perfect division for first subset.
Discrepancy A = 2w.

MIP for NPP:
min 2w
st. w > > ajx; —
w > —>, a;x; + 0
T j - {0,1} ]:1,,n
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CBR-R for NPP MIP
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e write NPP MIP as min{w| Ax 4+ Bw <b, x € Z" } with

CBR-R for NPP MIP

. B =

and b =

B
—p
0
1
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e write NPP MIP as min{w| Ax 4+ Bw <b, x € Z" } with

apply basis reduction on D = [

CBR-R for NPP MIP

. B =

A b
0 M

6,
—0
b =
and 0
1
] to obtain D =
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CBR-R for NPP MIP

e write NPP MIP as min{w| Ax 4+ Bw <b, x € Z" } with

al —1 5}

—al —1 —0
A= ek B = ol and b = 0 |

1 0 1
A b - |4

| . . _ . _
apply basis reduction on D [O M] to obtain D 0

e solve the CBR-R reformulation using standard solver:

min{w| Ay + Bu <b, y € Z"}
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CBR-R Tests:
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CBR-R Tests:

on NPP

discrepancy (log scale)

time (seconds)
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CBR-R Tests: on NPP

discrepancy (log scale)

e BKZ for BR, CPLEX 9.0 as MIP solver
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CBR-R Tests:

on NPP and BALNPP
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e BKZ for BR, CPLEX 9.0 as MIP solver
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Remarks

e BR, CBR-R: can be applied to
— unequal partitions (e.g., 8 = 0.3«)
— constrained partitions (» . x; =1 # n/2)
— NPP with k£ > 3 subsets, with unequal shares (# 1/k),
and /or cardinality constraints
e |attice algos efficient in practice for reasonably large n

e running times increase with R

e for n > 100, KK may still be the best (current) option
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Outline

e Number Partitioning Problem (NPP)

e Karmarkar-Karp differencing (KK)

e NPP and the Closest Vector Problem (CVP)

e A Basis Reduction Heuristic for

e Mixed Integer Program (MIP) for NPP
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