
Lattices and Integer Optimization -
A Tutorial (Part II)

Bala Krishnamoorthy
Department of Mathematics, WSU

April 29, 2010

Basis Reduction (BR) and Discrete
Optimization

• Lenstra (1983) - poly-time algo for integer programming (IP) in

fixed dimensions (also, Kannan (1985))

– BR is one of the key steps

Lattices and Integer Optimization 1

Basis Reduction (BR) and Discrete
Optimization

• Lenstra (1983) - poly-time algo for integer programming (IP) in

fixed dimensions (also, Kannan (1985))

– BR is one of the key steps

– not implemented in practice

Lattices and Integer Optimization 1

Basis Reduction (BR) and Discrete
Optimization

• Lenstra (1983) - poly-time algo for integer programming (IP) in

fixed dimensions (also, Kannan (1985))

– BR is one of the key steps

– not implemented in practice

• more straightforward application of BR to IP

– column basis reduction

Lattices and Integer Optimization 1

Basis Reduction (BR) and Discrete
Optimization

• Lenstra (1983) - poly-time algo for integer programming (IP) in

fixed dimensions (also, Kannan (1985))

– BR is one of the key steps

– not implemented in practice

• more straightforward application of BR to IP

– column basis reduction (joint work with Pataki (UNC))

– simple; works in practice

– theory for class of knapsack problems,

and for general IPs (Pataki et al., 2010)

Lattices and Integer Optimization 1

Basis Reduction (BR) and Discrete
Optimization

• Lenstra (1983) - poly-time algo for integer programming (IP) in

fixed dimensions (also, Kannan (1985))

– BR is one of the key steps

– not implemented in practice

• more straightforward application of BR to IP

– column basis reduction (joint work with Pataki (UNC))

– simple; works in practice

– theory for class of knapsack problems,

and for general IPs (Pataki et al., 2010)

• lattice-based approaches to number partitioning in hard phase (joint

work with Bill Webb, Nathan Moyer (WSU))

Lattices and Integer Optimization 1

Integer Programming (IP)

• IP feasibility

Given

P = {x | ` ≤ Ax ≤ b },

Find x ∈ P ∩ Zn, or prove that no such x exists.

Lattices and Integer Optimization 2

Branching for IP feasibility

Given polyhedron P , integral vector c,

• width(c, P) = max { cTx |x ∈ P }−min { cTx |x ∈ P } = γ− δ.

Lattices and Integer Optimization 3

Branching for IP feasibility

Given polyhedron P , integral vector c,

• width(c, P) = max { cTx |x ∈ P }−min { cTx |x ∈ P } = γ− δ.

• branching on cTx means creating the branches cTx = dδe, cTx =
dδe+ 1, . . . , cx = bγc (add constraint to LP relaxation).

Lattices and Integer Optimization 3

Branching for IP feasibility

Given polyhedron P , integral vector c,

• width(c, P) = max { cTx |x ∈ P }−min { cTx |x ∈ P } = γ− δ.

• branching on cTx means creating the branches cTx = dδe, cTx =
dδe+ 1, . . . , cx = bγc (add constraint to LP relaxation).

• no branches created ⇒ P has no integral point

Lattices and Integer Optimization 3

Branching for IP feasibility

Given polyhedron P , integral vector c,

• width(c, P) = max { cTx |x ∈ P }−min { cTx |x ∈ P } = γ− δ.

• branching on cTx means creating the branches cTx = dδe, cTx =
dδe+ 1, . . . , cx = bγc (add constraint to LP relaxation).

• no branches created ⇒ P has no integral point

• when c = ei, we are branching on single variable xi

Lattices and Integer Optimization 3

Branching for IP feasibility

Given polyhedron P , integral vector c,

• width(c, P) = max { cTx |x ∈ P }−min { cTx |x ∈ P } = γ− δ.

• branching on cTx means creating the branches cTx = dδe, cTx =
dδe+ 1, . . . , cx = bγc (add constraint to LP relaxation).

• no branches created ⇒ P has no integral point

• when c = ei, we are branching on single variable xi

• different choices of c produce very different effects on branching

Lattices and Integer Optimization 3

Column-BR in rangespace (CBR-R)

P = {x | ` ≤ Ax ≤ b }
P̃ = {y | ` ≤ (AU)y ≤ b}

where U is unimodular

Lattices and Integer Optimization 4

Column-BR in rangespace (CBR-R)

P = {x | ` ≤ Ax ≤ b }
P̃ = {y | ` ≤ (AU)y ≤ b}

where U is unimodular

• There is 1-1 correspondence between P ∩ Zn and P̃ ∩ Zn given by

Uy = x

Lattices and Integer Optimization 4

Column-BR in rangespace (CBR-R)

P = {x | ` ≤ Ax ≤ b }
P̃ = {y | ` ≤ (AU)y ≤ b}

where U is unimodular

• There is 1-1 correspondence between P ∩ Zn and P̃ ∩ Zn given by

Uy = x

• choose U s.t. columns of AU are reduced

• applies same even if some of the “≤” are “=”

Lattices and Integer Optimization 4

Column-BR in rangespace (CBR-R)

P = {x | ` ≤ Ax ≤ b }
P̃ = {y | ` ≤ (AU)y ≤ b}

where U is unimodular

• There is 1-1 correspondence between P ∩ Zn and P̃ ∩ Zn given by

Uy = x

• choose U s.t. columns of AU are reduced

• applies same even if some of the “≤” are “=”

• a “primal” method

Lattices and Integer Optimization 4

Column-BR in nullspace (CBR-N)

• Let A1x = b1 is a subset of the inequalities in ` ≤ Ax ≤ b

Lattices and Integer Optimization 5

Column-BR in nullspace (CBR-N)

• Let A1x = b1 is a subset of the inequalities in ` ≤ Ax ≤ b

• reformulation using Hermite Normal Form (HNF) computation

{x ∈ Zn |A1x = b1 } = {xd + B1λ |λ ∈ Zn−m }

with [B1,xd] typically not reduced

Lattices and Integer Optimization 5

Column-BR in nullspace (CBR-N)

• Let A1x = b1 is a subset of the inequalities in ` ≤ Ax ≤ b

• reformulation using Hermite Normal Form (HNF) computation

{x ∈ Zn |A1x = b1 } = {xd + B1λ |λ ∈ Zn−m }

with [B1,xd] typically not reduced

• substitute B1λ + xd for x, then do CBR-R

Lattices and Integer Optimization 5

Column-BR in nullspace (CBR-N)

• Let A1x = b1 is a subset of the inequalities in ` ≤ Ax ≤ b

• reformulation using Hermite Normal Form (HNF) computation

{x ∈ Zn |A1x = b1 } = {xd + B1λ |λ ∈ Zn−m }

with [B1,xd] typically not reduced

• substitute B1λ + xd for x, then do CBR-R

• a “dual” method

Lattices and Integer Optimization 5

CBR-N v/s CBR-R

• numerical output of CBR-N is similar to the reformulation technique

of Aardal, Hurkens, and Lenstra (1998) – going from n vars, m

equations to n−m vars, no equations

Lattices and Integer Optimization 6

CBR-N v/s CBR-R

• numerical output of CBR-N is similar to the reformulation technique

of Aardal, Hurkens, and Lenstra (1998) – going from n vars, m

equations to n−m vars, no equations

• CBR-R stays in same space; computed in a simpler way

Lattices and Integer Optimization 6

CBR-N v/s CBR-R

• numerical output of CBR-N is similar to the reformulation technique

of Aardal, Hurkens, and Lenstra (1998) – going from n vars, m

equations to n−m vars, no equations

• CBR-R stays in same space; computed in a simpler way

• add slacks to “≤”, then apply AHL-reformulation?

Was not tried. Going to nullspace has some benefits (esp. in

cryptography applications)

Lattices and Integer Optimization 6

CBR-N v/s CBR-R

• numerical output of CBR-N is similar to the reformulation technique

of Aardal, Hurkens, and Lenstra (1998) – going from n vars, m

equations to n−m vars, no equations

• CBR-R stays in same space; computed in a simpler way

• add slacks to “≤”, then apply AHL-reformulation?

Was not tried. Going to nullspace has some benefits (esp. in

cryptography applications)

• both CBR-R and CBR-N actually work for essentially all hard IPs

used to test “non-traditional” IP algorithms

Lattices and Integer Optimization 6

t + 1-level decomposable knapsack problems

• a = p1M1 + p2M2 + · · · + ptMt + r, with M1 > M2 > · · · > Mt

and for suitable β, δ

(KP) β ≤ ax ≤ β + δ, 0 ≤ x ≤ u, x ∈ Zn

Lattices and Integer Optimization 7

t + 1-level decomposable knapsack problems

• a = p1M1 + p2M2 + · · · + ptMt + r, with M1 > M2 > · · · > Mt

and for suitable β, δ

(KP) β ≤ ax ≤ β + δ, 0 ≤ x ≤ u, x ∈ Zn

• with suitably chosen data, the problem is “both hard and easy”

Lattices and Integer Optimization 7

t + 1-level decomposable knapsack problems

• a = p1M1 + p2M2 + · · · + ptMt + r, with M1 > M2 > · · · > Mt

and for suitable β, δ

(KP) β ≤ ax ≤ β + δ, 0 ≤ x ≤ u, x ∈ Zn

• with suitably chosen data, the problem is “both hard and easy”

• if t = 1, we just write p = p1, M = M1

Lattices and Integer Optimization 7

DKP instances for t = 1

• a classic example: Jeroslow’s problem

2(x1 + · · ·+ xn) = n

xi ∈ { 0, 1 }n

where n is odd.

• with B&B branching on the xi, no node is pruned above level n/2

• if we branch on x1 + · · ·+ xn, we solve it at the root node

• here p = 1, r = 0, M = 2

Lattices and Integer Optimization 8

Other known instances for t = 1

• p = 1, r = (20, . . . , 2n−1), u = 1, M = 2n+`+1 : Todd’s problem

from Chvátal “Hard knapsack problems” (1980)

• p = 1, r = (1, . . . , n), u = 1, M = n(n + 1) : Avis’ problem from

same paper

• Gu, Nemhauser, Savelsbergh (2001) - modification of Todd’s

problem

• Cornuéjols, Urbaniak, Weismantel, Wolsey (1996): p > 0, u =
+∞ (inequality)

• Aardal-Lenstra (2004, 2006) : same as CUWW, but equality

Lattices and Integer Optimization 9

Other known instances for t = 1

• p = 1, r = (20, . . . , 2n−1), u = 1, M = 2n+`+1 : Todd’s problem

from Chvátal “Hard knapsack problems” (1980)

• p = 1, r = (1, . . . , n), u = 1, M = n(n + 1) : Avis’ problem from

same paper

• Gu, Nemhauser, Savelsbergh (2001) - modification of Todd’s

problem

• Cornuéjols, Urbaniak, Weismantel, Wolsey (1996): p > 0, u =
+∞ (inequality)

• Aardal-Lenstra (2004, 2006) : same as CUWW, but equality

All, except the last two take ≥ 2n/2 nodes for ordinary B&B.

In last, ∃ a large rhs for which the problem is infeasible

Lattices and Integer Optimization 9

Recipe for DKPs and hardness

• Krishnamoorthy and Pataki (2009): unifying “recipe” to generate

DKPs with t = 1

Lattices and Integer Optimization 10

Recipe for DKPs and hardness

• Krishnamoorthy and Pataki (2009): unifying “recipe” to generate

DKPs with t = 1

• Input: p, r,u.

Output: M,β, δ s.t. the infeasibility of (KP) is proven by branching

on pTx.

Lattices and Integer Optimization 10

Recipe for DKPs and hardness

• Krishnamoorthy and Pataki (2009): unifying “recipe” to generate

DKPs with t = 1

• Input: p, r,u.

Output: M,β, δ s.t. the infeasibility of (KP) is proven by branching

on pTx.

• lower bound on the number of nodes necessary for ordinary B&B

(using xj’s)

Lattices and Integer Optimization 10

DKPs get harder as t grows

two infeasible knapsack problems: can you tell which one is harder?

1473x1 + 1524x2 + 1569x3 + 1570x4 + 1575x5 + 1624x6 + 1625x7

+2160x8 + 2206x9 + 2207x10 + 2211x11 + 2211x12 + 2257x13

+2260x14 + 2305x15 + 2843x16 + 2943x17 + 2947x18 + 2991x19

+2993x20 + 2997x21 + 3528x22 + 3577x23 + 3631x24 + 3677x25

= 28980, xi ∈ {0, 1}.

1314x1 + 1315x2 + 1317x3 + 1318x4 + 1971x5 + 1972x6 + 1973x7

+1976x8 + 1977x9 + 1977x10 + 2629x11 + 2630x12 + 2631x13

+2631x14 + 2633x15 + 2634x16 + 2635x17 + 2635x18 + 3287x19

+3287x20 + 3287x21 + 3289x22 + 3292x23 + 3293x24 + 3293x25

= 28981, xi ∈ {0, 1}.

Lattices and Integer Optimization 11

Similar looking DKPs

• The second one has t = 1, and takes ≈ 22, 000 nodes to prove

infeasibility.

• The first one has t = 2, and takes ≈ 3.6 million nodes to prove

infeasibility. (Note that 225 ≈ 33 million).

Lattices and Integer Optimization 12

DKPs get more interesting as t grows

• if Q = LP relaxation of t = 2 DKP, then width(ei, Q) = 1− 0 ∀i

Lattices and Integer Optimization 13

DKPs get more interesting as t grows

• if Q = LP relaxation of t = 2 DKP, then width(ei, Q) = 1− 0 ∀i

• width(p1, Q) > 1, but [max{p1x : x ∈ Q} −min{p1x : x ∈ Q}]
only contains one integer. So “branching” on p1x means adding

p1x = k to the LP for some k

Lattices and Integer Optimization 13

DKPs get more interesting as t grows

• if Q = LP relaxation of t = 2 DKP, then width(ei, Q) = 1− 0 ∀i

• width(p1, Q) > 1, but [max{p1x : x ∈ Q} −min{p1x : x ∈ Q}]
only contains one integer. So “branching” on p1x means adding

p1x = k to the LP for some k

• afterwards, branching on p2x proves infeasibility

Lattices and Integer Optimization 13

DKPs get more interesting as t grows

• if Q = LP relaxation of t = 2 DKP, then width(ei, Q) = 1− 0 ∀i

• width(p1, Q) > 1, but [max{p1x : x ∈ Q} −min{p1x : x ∈ Q}]
only contains one integer. So “branching” on p1x means adding

p1x = k to the LP for some k

• afterwards, branching on p2x proves infeasibility

• These DKPs are called cascade problems. For n = 40 they become

unsolvable as IPs for commercial solvers

Lattices and Integer Optimization 13

DKPs get more interesting as t grows

• if Q = LP relaxation of t = 2 DKP, then width(ei, Q) = 1− 0 ∀i

• width(p1, Q) > 1, but [max{p1x : x ∈ Q} −min{p1x : x ∈ Q}]
only contains one integer. So “branching” on p1x means adding

p1x = k to the LP for some k

• afterwards, branching on p2x proves infeasibility

• These DKPs are called cascade problems. For n = 40 they become

unsolvable as IPs for commercial solvers

• a “not thin” direction beats a thin direction!

Lattices and Integer Optimization 13

Easiness of DKPs

• they are easy, if branching on pT
1 x , pT

2 x , . . . , pT
t x.

Lattices and Integer Optimization 14

Easiness of DKPs

• they are easy, if branching on pT
1 x , pT

2 x , . . . , pT
t x.

• if we fix pT
i x, the problem simplifies (piMi disappears)

Lattices and Integer Optimization 14

Easiness of DKPs

• they are easy, if branching on pT
1 x , pT

2 x , . . . , pT
t x.

• if we fix pT
i x, the problem simplifies (piMi disappears)

• width in direction of ps+1x, after we branched on p1x, . . . ,psx is

O

(
rhs

M2
s+1

+
δ

Ms+1

)
.

Lattices and Integer Optimization 14

CBR’s action on DKPs

• Briefly: the “good reasons” for pix are transferred to the variable

yn−i in the reformulation

Lattices and Integer Optimization 15

Example of CBR of a DKP

106 ≤ 21x1 + 19x2 ≤ 113
x1, x2 ∈ ∈ [0, 6] ∩ Z

5

6

5

6

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

P

x1

x2

Hard for branching on xis. Easy for branching on x1 + x2: max =
5.94, min = 5.04.

Lattices and Integer Optimization 16

After Reformulation ...

6

5

−33−38

�����������������������
�����������������������
�����������������������
�����������������������

P̃

y1

y2

. . . branching on y2 proves infeasibility!

Lattices and Integer Optimization 17

CBR’s Action on DKP

• we compute U so that(∑t
i=1 piMi + r

I

)
U is reduced.

Lattices and Integer Optimization 18

CBR’s Action on DKP

• we compute U so that(∑t
i=1 piMi + r

I

)
U is reduced.

• Theorem: If separation between M1 > M2 > · · · > Mt is suitably

large, then 
p1

p2
...

pt

U =


0 0 . . . 0 0 0 ∗
0 0 . . . 0 0 ∗ ∗
...

0 0 . . . ∗ . . . ∗ ∗



Lattices and Integer Optimization 18

CBR’s Action on DKP

• we compute U so that(∑t
i=1 piMi + r

I

)
U is reduced.

• Theorem: If separation between M1 > M2 > · · · > Mt is suitably

large, then 
p1

p2
...

pt

U =


0 0 . . . 0 0 0 ∗
0 0 . . . 0 0 ∗ ∗
...

0 0 . . . ∗ . . . ∗ ∗


When computing U , we do not know the decomposition!

Lattices and Integer Optimization 18

CBR’s Action on DKP

• using the correspondence Uy = x, we get

p1x = p1(Uy) = (p1U)y = (p1U)nyn.

• Corollary:

– Branching on yn in reformulation ⇔ branching on p1x in original

problem

– Afterwards: yn−1 ⇔ p2x, etc.

– Analogous result for CBR-N

Lattices and Integer Optimization 19

Summary of CBR

• general reformulation technique for arbitrary IPs.

• has two variants: CBR-R and CBR-N, both work in practice and

can be analyzed

• a fairly general class of IPs provably hard for ordinary B&B

• the provably hard problems turn into provably easy ones: the

reformulation “uncovers” the hidden, dominant directions

• The cascade problems: thinner 6= better!

Lattices and Integer Optimization 20

Summary of CBR

• general reformulation technique for arbitrary IPs.

• has two variants: CBR-R and CBR-N, both work in practice and

can be analyzed

• a fairly general class of IPs provably hard for ordinary B&B

• the provably hard problems turn into provably easy ones: the

reformulation “uncovers” the hidden, dominant directions

• The cascade problems: thinner 6= better!

• Pataki et al. (2010) - B&B solves “almost all” instances of CBR-R

of {x | `1 ≤ Ax ≤ u1; `2 ≤ x ≤ u2} at root node if Aij ∈
U{1, . . . ,M} for sufficiently large M

Lattices and Integer Optimization 20

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ ,

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

• 4∗ = minimum discrepancy

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

• Given S = {a1, . . . , an} with aj ∈ Z>0, α =
∑

j aj,

• divide S into 2 disjoint subsets S1 ∪ S2 = S such that

4 =

∣∣∣∣∣∣
∑
j∈S1

aj −
∑
j∈S2

aj

∣∣∣∣∣∣ , the discrepancy,

is minimized.

• 4∗ = minimum discrepancy

• allocate β = 1/2 α, or, as close as possible to β, to each subset

Lattices and Integer Optimization 21

Number Partitioning Problem (NPP)

Lattices and Integer Optimization 22

Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

Lattices and Integer Optimization 22

Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

• only one dealing directly with numbers

Lattices and Integer Optimization 22

Number Partitioning Problem (NPP)

• one of six basic NP-complete problems in Garey and Johnson (79)

• only one dealing directly with numbers

• balanced NPP (BalNPP): |S1| = |S2| = n/2 (for even n)

Lattices and Integer Optimization 22

NPP – Example

• S = { 6, 4, 7, 8, 5 }

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14;

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15;

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15; 4 = 4∗ = 0

Lattices and Integer Optimization 23

NPP – Example

• S = { 6, 4, 7, 8, 5 }

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 7} with subset sum = 16,

– S2 = {6, 8} with subset sum = 14; 4 = 2

• S = {4, 5, 6, 7, 8}

– S1 = {4, 5, 6} and S2 = {7, 8}
– both subset sums = 15; 4 = 4∗ = 0

• 4∗ = 0 (or 4∗ = 1 when α odd) gives a perfect partition

Lattices and Integer Optimization 23

Applications of NPP

Lattices and Integer Optimization 24

Applications of NPP

• practical

• theoretical

Lattices and Integer Optimization 24

Applications of NPP

• practical

– scheduling jobs on processors

(NPP into k ≥ 3 subsets: multiprocessor scheduling problem)

– VLSI circuit design

– public key cryptography

• theoretical

Lattices and Integer Optimization 24

Applications of NPP

• practical

– scheduling jobs on processors

(NPP into k ≥ 3 subsets: multiprocessor scheduling problem)

– VLSI circuit design

– public key cryptography

• theoretical

– phase transition (fully characterized mathematically)

– NP-completeness of other problems involving numbers –

bin packing, knapsack etc.

Lattices and Integer Optimization 24

NPP – known results

• aj = U [1, R] for R ∈ Z>0

Lattices and Integer Optimization 25

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

Lattices and Integer Optimization 25

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

Lattices and Integer Optimization 25

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

– 4∗ = O(n 2−n R) for BalNPP

Lattices and Integer Optimization 25

NPP – known results

• aj = U [1, R] for R ∈ Z>0

• median and expected 4∗ (in the limit)

– 4∗ = O(
√

n 2−n R) for NPP

– 4∗ = O(n 2−n R) for BalNPP

∗ Karmarkar, Karp, Lueker, Odlyzko (88): median 4∗ for NPP

∗ Lueker (98): average 4∗ for NPP

∗ Mertens (98): median and average 4∗ for BalNPP

Lattices and Integer Optimization 25

Phase transition of NPP and BalNPP

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

• # perfect partitions ↑ as R ↓ with R < 2n

Lattices and Integer Optimization 26

Phase transition of NPP and BalNPP

• Prob(4∗ = 0/1) → 1 as n →∞ for R < 2n (easy phase)

• Prob(4∗ = 0/1) → 0 as n →∞ for R > 2n (hard phase)

– Gent and Walsh (96): empirical evidence

– Mertens (98): spin glass analogy

– Borgs, Chayes, and Pittel (01):

complete mathematical analysis

• # perfect partitions ↑ as R ↓ with R < 2n

• minimum partition unique for R � 2n

Lattices and Integer Optimization 26

Karmarkar-Karp differencing (KK)

Lattices and Integer Optimization 27

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

Lattices and Integer Optimization 27

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

Lattices and Integer Optimization 27

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)

Lattices and Integer Optimization 27

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)
recall, 4∗ = O(

√
n 2−n R)

Lattices and Integer Optimization 27

Karmarkar-Karp differencing (KK)

• maintain sorted list of numbers

• replace two largest numbers by their difference

(commit to place them in opposite subsets)

• Yakir (96): 4KK = O(n−0.72 log n R)
recall, 4∗ = O(

√
n 2−n R)

• running time is O(n log n)

Lattices and Integer Optimization 27

Complete KK heuristic

Lattices and Integer Optimization 28

Complete KK heuristic

• Korf (98), Mertens (99)

Lattices and Integer Optimization 28

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

Lattices and Integer Optimization 28

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

Lattices and Integer Optimization 28

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

Lattices and Integer Optimization 28

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

• # of branch-and-bound nodes is exponential in n when R > 2n

Lattices and Integer Optimization 28

Complete KK heuristic

• Korf (98), Mertens (99)

• also consider replacing two largest numbers by their sum

• improves on KK discrepancy as it continues to run

• effective in practice in the easy phase

• # of branch-and-bound nodes is exponential in n when R > 2n

• converges very slowly

Lattices and Integer Optimization 28

KK and CKK: Example

Lattices and Integer Optimization 29

KK and CKK: Example

6, 5, 4,1

4, 1, 1

3, 1

2

8, 7, 6,5,4

Lattices and Integer Optimization 29

KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

Lattices and Integer Optimization 29

KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

• dashed parts of the tree are pruned

Lattices and Integer Optimization 29

KK and CKK: Example

11, 4, 1

7, 1 15, 1 14, 4 16,4 26,4

4 6 8

21, 5, 4

5, 1

6, 5, 4,1

4, 1, 1

3, 1

2

9, 5, 4

4, 4

14 16 10 18 13 21 22 304 6 8 0

8, 7, 6,5,4

15, 6, 5,4

• dashed parts of the tree are pruned

• two-color associated tree to recover partition

Lattices and Integer Optimization 29

Algorithms for NPP

Lattices and Integer Optimization 30

Algorithms for NPP

• KK is the best polynomial time approx. algo known

Lattices and Integer Optimization 30

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

Lattices and Integer Optimization 30

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

Lattices and Integer Optimization 30

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

• lattice-based techniques?

Lattices and Integer Optimization 30

Algorithms for NPP

• KK is the best polynomial time approx. algo known

• metaheuristics for easy phase (Storer (96))

• concentrate on “hard phase” (R > 2n)

• lattice-based techniques?

• typical numbers are huge; for n = 30, look at aj’s with 11 digits!

Lattices and Integer Optimization 30

Lattice Problems and NPP

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector t, rational γ > 0,

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector t, rational γ > 0,

find x ∈ Zn s.t. ‖Bx− t‖≤ γ, or prove ‖Bx− t‖> γ ∀x ∈ Zn.

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector t, rational γ > 0,

find x ∈ Zn s.t. ‖Bx− t‖≤ γ, or prove ‖Bx− t‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector t, rational γ > 0,

find x ∈ Zn s.t. ‖Bx− t‖≤ γ, or prove ‖Bx− t‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists.

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector t, rational γ > 0,

find x ∈ Zn s.t. ‖Bx− t‖≤ γ, or prove ‖Bx− t‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists. Here, β =
∑

j aj/2.

Lattices and Integer Optimization 31

Lattice Problems and NPP

• Closest Vector Problem (decision version - DCVP):

Given: lattice basis B ∈ Zm×n, target vector t, rational γ > 0,

find x ∈ Zn s.t. ‖Bx− t‖≤ γ, or prove ‖Bx− t‖> γ ∀x ∈ Zn.

• Decision version of NPP (DNPPd): Given numbers a1, . . . , an and

an even number 2d, decide if a partition exists with 4 ≤ 2d.

Equivalently, find x ∈ {0, 1}n s.t.
∑

j ajxj = β− δ for some δ ≤ d,

if it exists. Here, β =
∑

j aj/2.

• reduce DNPP to DCVP

Lattices and Integer Optimization 31

DNPP to DCVP

Theorem 1. DNPPd is reducible to DCVP for d > 0.

Lattices and Integer Optimization 32

DNPP to DCVP

Theorem 1. DNPPd is reducible to DCVP for d > 0.

B =
[
2d I

aT

]
,

Lattices and Integer Optimization 32

DNPP to DCVP

Theorem 1. DNPPd is reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, t =

[
d 1
β

]
.

Lattices and Integer Optimization 32

DNPP to DCVP

Theorem 1. DNPPd is reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, t =

[
d 1
β

]
.

• output of reduction: DCVP instance (B, t, d
√

n + 1)

Lattices and Integer Optimization 32

DNPP to DCVP

Theorem 1. DNPPd is reducible to DCVP for d > 0.

B =
[
2d I

aT

]
, t =

[
d 1
β

]
.

• output of reduction: DCVP instance (B, t, d
√

n + 1)

• generalization of Micciancio (2001) reduction of subset sum to CVP

Lattices and Integer Optimization 32

DBalNPP to DCVP

Lattices and Integer Optimization 33

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d.

Lattices and Integer Optimization 33

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Lattices and Integer Optimization 33

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is reducible to DCVP for d > 0.

Lattices and Integer Optimization 33

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is reducible to DCVP for d > 0.

B′ =

 2d I

(d + 1)1T

aT

 , t′ =

 d 1
(d + 1)bn/2c

β

 .

Lattices and Integer Optimization 33

DBalNPP to DCVP

• DBalNPPd: Given a1, . . . , an and an even number 2d > 0,

decide if a balanced partition exists with 4 ≤ 2d. Equivalently,

find x ∈ {0, 1}n with
∑

j xj = bn/2c s.t.
∑

j ajxj = β − δ or∑
j ajxj = β + δ, for some δ ≤ d, if it exists.

Theorem 2. DBalNPPd is reducible to DCVP for d > 0.

B′ =

 2d I

(d + 1)1T

aT

 , t′ =

 d 1
(d + 1)bn/2c

β

 .

• output of reduction: DCVP instance (B′, t′, d
√

n + 1)

Lattices and Integer Optimization 33

A lattice algorithm for NPP

Lattices and Integer Optimization 34

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

Lattices and Integer Optimization 34

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

Lattices and Integer Optimization 34

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but,

Lattices and Integer Optimization 34

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete!

Lattices and Integer Optimization 34

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete! no such oracle exists for large n

Lattices and Integer Optimization 34

A lattice algorithm for NPP

• Given a DCVP oracle, do a binary search on [0, β] for 4∗

• NPP is solved using a polynomial # calls to the oracle

• but, DCVP is NP-complete! no such oracle exists for large n

• algo does not use estimates on expected 4∗

Lattices and Integer Optimization 34

A Basis Reduction Heuristic for NPP

Lattices and Integer Optimization 35

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using BR on

Lattices and Integer Optimization 35

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using BR on

D =
[
B t
0 M

]
=

2d I d1
aT β

0 M

 ,

Lattices and Integer Optimization 35

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using BR on

D =
[
B t
0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

Lattices and Integer Optimization 35

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using BR on

D =
[
B t
0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

Lattices and Integer Optimization 35

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using BR on

D =
[
B t
0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• with 4∗ =
√

n 2−n R, try d = c4∗ for several c’s in [1/n, n]

Lattices and Integer Optimization 35

A Basis Reduction Heuristic for NPP

• (try to) solve DCVP using BR on

D =
[
B t
0 M

]
=

2d I d1
aT β

0 M

 , where M is a large number.

• DCVP → shortest vector problem (SVP); Kannan (87)

• with 4∗ =
√

n 2−n R, try d = c4∗ for several c’s in [1/n, n]

• Lagarias & Odlyzko (85), Coster et al. (92): for subset sums

Lattices and Integer Optimization 35

BR Algo Tests:

Lattices and Integer Optimization 36

BR Algo Tests: for NPP

10
2

10
4

10
6

10
8

10
10

10
12

10
14

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50 55 60
0

300

600

900

1200

1500

n

tim
e

(s
ec

on
ds

)

KK

CKK

BR

Opt

time

Lattices and Integer Optimization 36

BR Algo Tests: for NPP

10
2

10
4

10
6

10
8

10
10

10
12

10
14

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50 55 60
0

300

600

900

1200

1500

n

tim
e

(s
ec

on
ds

)

KK

CKK

BR

Opt

time

• block Korkine-Zolotarev (BKZ) reduction

Lattices and Integer Optimization 36

BR Algo Tests: for NPP

10
2

10
4

10
6

10
8

10
10

10
12

10
14

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50 55 60
0

300

600

900

1200

1500

n

tim
e

(s
ec

on
ds

)

KK

CKK

BR

Opt

time

• block Korkine-Zolotarev (BKZ) reduction

• opt: 4∗ =
√

n 2−n R is plotted

• ckk: estimated 4CKK for same running time as BR

Lattices and Integer Optimization 36

BR Algo Tests: for NPP and BalNPP

10
2

10
4

10
6

10
8

10
10

10
12

10
14

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50 55 60
0

300

600

900

1200

1500

n

tim
e

(s
ec

on
ds

)

KK

CKK

BR

Opt

time

10
2

10
4

10
6

10
8

10
10

10
12

10
14

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50 55 60
0

300

600

900

1200

1500

n

tim
e

(s
ec

on
ds

)

KK

CKK

BR

Opt

time

• block Korkine-Zolotarev (BKZ) reduction

• opt: 4∗ =
√

n 2−n R is plotted

• ckk: estimated 4CKK for same running time as BR

Lattices and Integer Optimization 36

Mixed Integer Program (MIP) for NPP

Lattices and Integer Optimization 37

Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Lattices and Integer Optimization 37

Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Discrepancy 4 = 2w.

Lattices and Integer Optimization 37

Mixed Integer Program (MIP) for NPP

• let xj = 1 if aj is put in first subset, and 0 otherwise; and

w = deviation from perfect division for first subset.

Discrepancy 4 = 2w.

MIP for NPP:

min 2w

s.t. w ≥
∑

aj xj − β

w ≥ −
∑

aj xj + β

xj ∈ {0, 1} j = 1, . . . , n.

Lattices and Integer Optimization 37

CBR-R for NPP MIP

Lattices and Integer Optimization 38

CBR-R for NPP MIP

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

Lattices and Integer Optimization 38

CBR-R for NPP MIP

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

apply basis reduction on D =
[
A b
0 M

]
to obtain D̃ =

[
Ã b̃
0 M

]
,

Lattices and Integer Optimization 38

CBR-R for NPP MIP

• write NPP MIP as min{w | Ax + Bw ≤ b, x ∈ Zn } with

A =


aT

−aT

−I

I

 , B =


−1
−1
0
0

 , and b =


β

−β

0
1

 ;

apply basis reduction on D =
[
A b
0 M

]
to obtain D̃ =

[
Ã b̃
0 M

]
,

• solve the CBR-R reformulation using standard solver:

min{w | Ãy + Bw ≤ b̃, y ∈ Zn }

Lattices and Integer Optimization 38

CBR-R Tests:

Lattices and Integer Optimization 39

CBR-R Tests: on NPP

10
2

10
4

10
6

10
8

10
10

10
12

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50
0

200

400

600

800

1000

n
tim

e
(s

ec
on

ds
)

KK

CKK

Opt

time

Lattices and Integer Optimization 39

CBR-R Tests: on NPP

10
2

10
4

10
6

10
8

10
10

10
12

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50
0

200

400

600

800

1000

n
tim

e
(s

ec
on

ds
)

KK

CKK

Opt

time

• BKZ for BR, CPLEX 9.0 as MIP solver

Lattices and Integer Optimization 39

CBR-R Tests: on NPP and BalNPP

10
2

10
4

10
6

10
8

10
10

10
12

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50
0

200

400

600

800

1000

n
tim

e
(s

ec
on

ds
)

KK

CKK

Opt

time

10
2

10
4

10
6

10
8

10
10

di
sc

re
pa

nc
y

(lo
g

sc
al

e)

20 25 30 35 40 45 50
0

200

400

600

800

n

tim
e

(s
ec

on
ds

)

KK

CBLDM

Opt

time

• BKZ for BR, CPLEX 9.0 as MIP solver

Lattices and Integer Optimization 39

Remarks

Lattices and Integer Optimization 40

Remarks

• BR, CBR-R: can be applied to

Lattices and Integer Optimization 40

Remarks

• BR, CBR-R: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

Lattices and Integer Optimization 40

Remarks

• BR, CBR-R: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

Lattices and Integer Optimization 40

Remarks

• BR, CBR-R: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

• running times increase with R

Lattices and Integer Optimization 40

Remarks

• BR, CBR-R: can be applied to

– unequal partitions (e.g., β = 0.3α)

– constrained partitions (
∑

j xj = r 6= n/2)

– NPP with k ≥ 3 subsets, with unequal shares (6= 1/k),

and/or cardinality constraints

• lattice algos efficient in practice for reasonably large n

• running times increase with R

• for n ≥ 100, KK may still be the best (current) option

Lattices and Integer Optimization 40

Outline

• Number Partitioning Problem (NPP)

• Karmarkar-Karp differencing (KK)

• NPP and the Closest Vector Problem (CVP)

• A Basis Reduction Heuristic for NPP

• Mixed Integer Program (MIP) for NPP

Lattices and Integer Optimization 41

