Math 524: Lecture Notes and Videos on Algebraic Topology
	  
	    
	      |  
		Copyright: I (Bala Krishnamoorthy) hold the copyright
		for all lecture scribes/notes, documents, and other
		materials including videos posted on these course web
		pages. These materials might not be used for commercial
		purposes without my consent.
	       | 
	     
	   
	   
	  Scribes from
	    all lectures so far (as a single big file) 
	   
	  
	    
	       
		| Lec  |   Date |  Topic(s)  |  Scribe |  Video |  
	       
	    
	     
	      |  1  |  
	       Aug 19  |  
	      
		syllabus,
		continuous functions, neighborhood of a point, topological
		space, homeomorphism, showing \(\mathbb{R}^1 \not\approx
		\mathbb{R}^2\)
	       | 
	      
		Scb1
	       | 
	      
		Vid1
	       | 
	     
	     
	      |  2  |  
	       Aug 21  |  
	      
		open sets, geometric independence (GI), \(n\)-simplex,
		barycentric coordinates, dimension, boundary,
		properties of simplices
	       | 
	      
		Scb2
	       | 
	      
		Vid2
	       | 
	     
	     
	      |  3  |  
	       Aug 26  |  
	      
		simplicial complex \(K\), subcomplex, \(p\)-skeleton
		\(K^{(p)}\), underlying space \(|K|\), two topologies
		for \(|K|\), properties of \(|K|\)
	       | 
	      
		Scb3
	       | 
	      
		Vid3
	       | 
	     
	     
	      |  4  |  
	       Aug 28  |  
	      
		star, closed star, link, properties, simplicial maps,
		abstract simplicial complex (ASC), vertex scheme,
		geometric realization
	       | 
	      
		Scb4
	       | 
	      
		Vid4
	       | 
	     
	     
	      |  5  |  
	       Sep   2  |  
	      
		ASC examples: cylinder, Möbius strip, torus,
		Klein bottle; algebra review: groups, homomorphism,
		finitely generated
	       | 
	      
		Scb5
	       | 
	      
		Vid5
	       | 
	     
	     
	      |  6  |  
	       Sep   4  |  
	      
		internal direct sum, results on finitely generated
		abelian groups, betti number, torsion coefficients,
		orientation of simplex
	       | 
	      
		Scb6
	       | 
	      
		Vid6
	       | 
	     
	     
	      |  7  |  
	       Sep   9  |  
	      
		\(p\)-chain, elementary \(p\)-chain, group of
		\(p\)-chains \(C_p(K)\), boundary homo'm, fundamental
		lemma of homology: \(\partial_p\partial_{p+1} = 0\)
	       | 
	      
		Scb7
	       | 
	      
		Vid7
	       | 
	     
	     
	      |  8  |  
	       Sep 11  |  
	      
		cycles, boundaries, homology group \(H_p(K) =
		Z_p(K)/B_p(K)\), pushing chain off an edge, chain
		carried by subcomplex
	       | 
	      
		Scb8
	       | 
	      
		Vid8
	       | 
	     
	    
	     
	      |  9  |  
	       Sep 16  |  
	      
		homology groups of torus \((\mathbb{T}^2)\) and Klein
		bottle (\(\mathbb{K}^2\)): \(H_1(\mathbb{T}^2) \simeq
		\mathbb{Z}\oplus \mathbb{Z}, H_2(\mathbb{T}^2) \simeq
		\mathbb{Z}\); \(H_1(\mathbb{K}^2) \simeq
		\mathbb{Z}\oplus \mathbb{Z}_2\,, H_2(\mathbb{K}^2) =
		0\)
	       | 
	      
		Scb9
	       | 
	      
		Vid9
	       | 
	     
	     
	      |  10  |  
	       Sep 18  |  
	      
		\(\mathbb{R}P^2, H_1(\mathbb{R}P^2) \simeq
		\mathbb{Z}_2\), \(k\)-fold dunce hat: \(H_1(D_k)
		\simeq \mathbb{Z}_k\), connected sum, \(\mathbb{R}P^2
		\# \mathbb{R}P^2 \approx \mathbb{K}^2\),
		\(0\)-dimensional homology
	       | 
	      
		Scb10
	       | 
	      
		Vid10
	       | 
	     
	     
	      |  11  |  
	       Sep 23  |  
	      
		proof: \(0\)-dim homology, reduced homology,
		\(\tilde{H_i}(\sigma) = 0 \, \forall i\) for
		\(p\)-simplex \(\sigma\), relative chains, boundary,
		and homology groups
	       | 
	      
		Scb11
	       | 
	      
		Vid11
	       | 
	     
	     
	      |  12  |  
	       Sep 25  |  
	      
		examples of relative homology, intuition in 3D,
		torsion in \(H_1(K,K_0)\) for Möbius strip for
		\(K_0=\) edge, excision theorem
	       | 
	      
		Scb12
	       | 
	      
		Vid12
	       | 
	     
	     
	      |  13  |  
	       Sep 30  |  
	      
		homomorphisms induced by simplicial maps, \(\partial
		f_{\#} = f_{\#} \partial \), functoriality, maps from
		1-cycle \(\mathbf{z}\) to torus, \(g_{\#}(\mathbf{z})
		\sim h_{\#}(\mathbf{z})\)
	       | 
	      
		Scb13
	       | 
	      
		Vid13
	       | 
	     
	     
	      |  14  |  
	       Oct   2  |  
	      
		chain homotopy, \( \partial D + D \partial =
		g_{\#}\)\(-\)\(f_{\#}\), contiguous maps, contiguous
		maps of pairs in relative homology, star condition
	       | 
	      
		Scb14
	       | 
	      
		Vid14
	       | 
	     
	     
	      |  15  |  
	       Oct   7  |  
	      
		simplicial approximation: \(h( \mathrm{St } \ v )
		\subset \mathrm{St} f(v) \,\forall v \in K^{(0)}\),
		subdivision \(K'\) of \(K\) and properties, star
		condition for subdivision
	       | 
	      
		Scb15
	       | 
	      
		Vid15
	       | 
	     
	     
	      |  16  |  
	       Oct   9  |  
	      
		cone of \(K\) with vertex \(\mathbf{w}\), barycentric
		subdivision \(\mathrm{Sd} K\), simplices in
		\(\mathrm{Sd} K\), \(\mathrm{diam}(\sigma) <
		\epsilon\, \forall \sigma \in \mathrm{Sd}^rK\) for
		large enough \(r\)
	       | 
	      
		Scb16
	       | 
	      
		Vid16
	       | 
	     
	     
	      |  17  |  
	       Oct 14  |  
	      
		simplicial approximation, subdivision of \(K\) holding
		\(K_0\) fixed, exact sequence: \(\mathrm{im} \,
		\phi_{i-1}\)\(=\)\(\mathrm{ker} \, \phi_i\), short
		exact sequence (SES)
	       | 
	      
		Scb17
	       | 
	      
		Vid17
	       | 
	     
	     
	      |  18  |  
	       Oct 16  |  
	      
		chain map, SES splits, connecting homo'm 
		\(\partial_{\star} : H_p(K,K_0)\)\(\to\)\(
		H_{p-1}(K_0)\), long exact homology sequence of pair
		\((K,K_0)\)
	       | 
	      
		Scb18
	       | 
	      
		Vid18
	       | 
	     
	     
	      |  19  |  
	       Oct 21  |  
	      
		SES of chain complexes, zig-zag lemma, long exact
		homology sequence, connecting homomorphism \(\partial_{\star}\),
		diagram chasing
	       | 
	      
		Scb19
	       | 
	      
		Vid19
	       | 
	     
	     
	      |  20  |  
	       Oct 23  |  
	      
		proof of zig-zag lemma, commuting diagram for chain
		complexes, Steenrod five lemma, Meyer-Vietoris
		sequence (MVS)
	       | 
	      
		Scb20
	       | 
	      
		Vid20
	       | 
	     
	     
	      |  21  |  
	       Oct 28  |  
	      
		proof of MVS,
		\(\phi(\mathbf{c})\)\(=\)\((i^{'}_{\#}(\mathbf{c}^{'}),
		\)\( -i^{''}_{\#}(\mathbf{c^{''}})) \), structure of
		\(H_p(K)\), examples, definition of \(\partial_{*}\),
		homology of \(d\)-sphere using MVS
	       | 
	      
		Scb21
	       | 
	      
		Vid21
	       | 
	     
	     
	      |  22  |  
	       Oct 30  |  
	      
		\(d\)-sphere: \(\tilde{H}_p(\mathbb{S}^d) \simeq
		\tilde{H}_{p-1}(\mathbb{S}^{d-1})\), suspension
		\(S(K)\), \(\tilde{H}_p(S(K)) \simeq
		\tilde{H}_{p-1}(K)\), cutting Klein bottle into two
		Möbius strips
	       | 
	      
		Scb22
	       | 
	      
		Vid22
	       | 
	     
	   
	   
	   
	    Last modified: Thu Oct 30 17:04:27 PDT 2025
	  
	 |