Math 524: Lecture Notes and Videos on Algebraic Topology

Copyright: I (Bala Krishnamoorthy) hold the copyright for all lecture scribes/notes, documents, and other materials including videos posted on these course web pages. These materials might not be used for commercial purposes without my consent.

Scribes from all lectures so far (as a single big file)

Lec Date Topic(s) Scribe Video
1 Aug 19 syllabus, continuous functions, neighborhood of a point, topological space, homeomorphism, showing \(\mathbb{R}^1 \not\approx \mathbb{R}^2\) Scb1 Vid1
2 Aug 21 open sets, geometric independence (GI), \(n\)-simplex, barycentric coordinates, dimension, boundary, properties of simplices Scb2 Vid2
3 Aug 26 simplicial complex \(K\), subcomplex, \(p\)-skeleton \(K^{(p)}\), underlying space \(|K|\), two topologies for \(|K|\), properties of \(|K|\) Scb3 Vid3
4 Aug 28 star, closed star, link, properties, simplicial maps, abstract simplicial complex (ASC), vertex scheme, geometric realization Scb4 Vid4
5 Sep   2 ASC examples: cylinder, Möbius strip, torus, Klein bottle; algebra review: groups, homomorphism, finitely generated Scb5 Vid5
6 Sep   4 internal direct sum, results on finitely generated abelian groups, betti number, torsion coefficients, orientation of simplex Scb6 Vid6
7 Sep   9 \(p\)-chain, elementary \(p\)-chain, group of \(p\)-chains \(C_p(K)\), boundary homo'm, fundamental lemma of homology: \(\partial_p\partial_{p+1} = 0\) Scb7 Vid7
8 Sep 11 cycles, boundaries, homology group \(H_p(K) = Z_p(K)/B_p(K)\), pushing chain off an edge, chain carried by subcomplex Scb8 Vid8
9 Sep 16 homology groups of torus \((\mathbb{T}^2)\) and Klein bottle (\(\mathbb{K}^2\)): \(H_1(\mathbb{T}^2) \simeq \mathbb{Z}\oplus \mathbb{Z}, H_2(\mathbb{T}^2) \simeq \mathbb{Z}\); \(H_1(\mathbb{K}^2) \simeq \mathbb{Z}\oplus \mathbb{Z}_2\,, H_2(\mathbb{K}^2) = 0\) Scb9 Vid9
10 Sep 18 \(\mathbb{R}P^2, H_1(\mathbb{R}P^2) \simeq \mathbb{Z}_2\), \(k\)-fold dunce hat: \(H_1(D_k) \simeq \mathbb{Z}_k\), connected sum, \(\mathbb{R}P^2 \# \mathbb{R}P^2 \approx \mathbb{K}^2\), \(0\)-dimensional homology Scb10 Vid10
11 Sep 23 proof: \(0\)-dim homology, reduced homology, \(\tilde{H_i}(\sigma) = 0 \, \forall i\) for \(p\)-simplex \(\sigma\), relative chains, boundary, and homology groups Scb11 Vid11
12 Sep 25 examples of relative homology, intuition in 3D, torsion in \(H_1(K,K_0)\) for Möbius strip for \(K_0=\) edge, excision theorem Scb12 Vid12
13 Sep 30 homomorphisms induced by simplicial maps, \(\partial f_{\#} = f_{\#} \partial \), functoriality, maps from 1-cycle \(\mathbf{z}\) to torus, \(g_{\#}(\mathbf{z}) \sim h_{\#}(\mathbf{z})\) Scb13 Vid13
14 Oct   2 chain homotopy, \( \partial D + D \partial = g_{\#}\)\(-\)\(f_{\#}\), contiguous maps, contiguous maps of pairs in relative homology, star condition Scb14 Vid14
15 Oct   7 simplicial approximation: \(h( \mathrm{St } \ v ) \subset \mathrm{St} f(v) \,\forall v \in K^{(0)}\), subdivision \(K'\) of \(K\) and properties, star condition for subdivision Scb15 Vid15
16 Oct   9 cone of \(K\) with vertex \(\mathbf{w}\), barycentric subdivision \(\mathrm{Sd} K\), simplices in \(\mathrm{Sd} K\), \(\mathrm{diam}(\sigma) < \epsilon\, \forall \sigma \in \mathrm{Sd}^rK\) for large enough \(r\) Scb16 Vid16
17 Oct 14 simplicial approximation, subdivision of \(K\) holding \(K_0\) fixed, exact sequence: \(\mathrm{im} \, \phi_{i-1}\)\(=\)\(\mathrm{ker} \, \phi_i\), short exact sequence (SES) Scb17 Vid17
18 Oct 16 chain map, SES splits, connecting homo'm \(\partial_{\star} : H_p(K,K_0)\)\(\to\)\( H_{p-1}(K_0)\), long exact homology sequence of pair \((K,K_0)\) Scb18 Vid18
19 Oct 21 SES of chain complexes, zig-zag lemma, long exact homology sequence, connecting homomorphism \(\partial_{\star}\), diagram chasing Scb19 Vid19
20 Oct 23 proof of zig-zag lemma, commuting diagram for chain complexes, Steenrod five lemma, Meyer-Vietoris sequence (MVS) Scb20 Vid20
21 Oct 28 proof of MVS, \(\phi(\mathbf{c})\)\(=\)\((i^{'}_{\#}(\mathbf{c}^{'}), \)\( -i^{''}_{\#}(\mathbf{c^{''}})) \), structure of \(H_p(K)\), examples, definition of \(\partial_{*}\), homology of \(d\)-sphere using MVS Scb21 Vid21
22 Oct 30 \(d\)-sphere: \(\tilde{H}_p(\mathbb{S}^d) \simeq \tilde{H}_{p-1}(\mathbb{S}^{d-1})\), suspension \(S(K)\), \(\tilde{H}_p(S(K)) \simeq \tilde{H}_{p-1}(K)\), cutting Klein bottle into two Möbius strips Scb22 Vid22


Last modified: Thu Oct 30 17:04:27 PDT 2025